scholarly journals The Role of Bone in Muscle Wasting

2020 ◽  
Vol 22 (1) ◽  
pp. 392
Author(s):  
Gordon L. Klein

This review describes the role of bone resorption in muscle atrophy as well as in muscle protein anabolism. Both catabolic and anabolic pathways involve components of the proinflammatory cytokine families and release of factors stored in bone during resorption. The juxtaposition of the catabolic and anabolic resorption-dependent pathways raises new questions about control of release of factors from bone, quantity of release in a variety of conditions, and relation of factors released from bone. The catabolic responses involve release of calcium from bone into the circulation resulting in increased inflammatory response in intensity and/or duration. The release of transforming growth factor beta (TGF-β) from bone suppresses phosphorylation of the AKT/mTOR pathway and stimulates ubiquitin-mediated breakdown of muscle protein. In contrast, muscle IL-6 production is stimulated by undercarboxylated osteocalcin, which signals osteoblasts to produce more RANK ligand, stimulating resorptive release of undercarboxylated osteocalcin, which in turn stimulates muscle fiber nutrient uptake and an increase in muscle mass.

2010 ◽  
Vol 10 ◽  
pp. 2367-2384 ◽  
Author(s):  
Eduardo Pérez-Gómez ◽  
Gaelle del Castillo ◽  
Juan Francisco Santibáñez ◽  
Jose Miguel Lêpez-Novoa ◽  
Carmelo Bernabéu ◽  
...  

Endoglin (CD105) is an auxiliary membrane receptor of transforming growth factor beta (TGF-β) that interacts with type I and type II TGF-β receptors and modulates TGF-β signaling. Endoglin is overexpressed in the tumor-associated vascular endothelium, where it modulates angiogenesis. This feature makes endoglin a promising target for antiangiogenic cancer therapy. In addition, recent studies on human and experimental models of carcinogenesis point to an important tumor cell–autonomous role of endoglin by regulating proliferation, migration, invasion, and metastasis. These studies suggest that endoglin behaves as a suppressor of malignancy in experimental and human epithelial carcinogenesis, although it can also promote metastasis in other types of cancer. In this review, we evaluate the implication of endoglin in tumor development underlying studies developed in our laboratories in recent years.


Sign in / Sign up

Export Citation Format

Share Document