scholarly journals Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials

2021 ◽  
Vol 22 (2) ◽  
pp. 634
Author(s):  
Giuseppe Venturella ◽  
Valeria Ferraro ◽  
Fortunato Cirlincione ◽  
Maria Letizia Gargano

Medicinal mushrooms have important health benefits and exhibit a broad spectrum of pharmacological activities, including antiallergic, antibacterial, antifungal, anti-inflammatory, antioxidative, antiviral, cytotoxic, immunomodulating, antidepressive, antihyperlipidemic, antidiabetic, digestive, hepatoprotective, neuroprotective, nephroprotective, osteoprotective, and hypotensive activities. The growing interest in mycotherapy requires a strong commitment from the scientific community to expand clinical trials and to propose supplements of safe origin and genetic purity. Bioactive compounds of selected medicinal mushrooms and their effects and mechanisms in in vitro and in vivo clinical studies are reported in this review. Besides, we analyzed the therapeutic use and pharmacological activities of mushrooms.

Author(s):  
Jabeena Khazir ◽  
Tariq Maqbool ◽  
Bilal Ahmad Mir

: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus strain and the causative agent of COVID-19 was identified to have emerged in Wuhan, China, in December 2019 [1]. This pandemic situation and magnitude of suffering has led to global effort to find out effective measures for discovery of new specific drugs and vaccines to combat this deadly disease. In addition to many initiatives to develop vaccines for protective immunity against SARS-CoV-2, some of which are at various stages of clinical trials researchers worldwide are currently using available conventional therapeutic drugs with potential to combat the disease effectively in other viral infections and it is believed that these antiviral drugs could act as a promising immediate alternative. Remdesivir (RDV), a broad-spectrum anti-viral agent, initially developed for the treatment of Ebola virus (EBOV) and known to show promising efficiency in in vitro and in vivo studies against SARS and MERS coronaviruses, is now being investigated against SARS-CoV-2. On May 1, 2020, The U.S. Food and Drug Administration (FDA) granted Emergency Use Authorization (EUA) for RDV to treat COVID-19 patients [2]. A number of multicentre clinical trials are on-going to check the safety and efficacy of RDV for the treatment of COVID-19. Results of published double blind, and placebo-controlled trial on RDV against SARS-CoV-2, showed that RDV administration led to faster clinical improvement in severe COVID-19 patients compared to placebo. This review highlights the available knowledge about RDV as a therapeutic drug for coronaviruses and its preclinical and clinical trials against COVID-19.


2020 ◽  
Vol 6 (4) ◽  
pp. 269
Author(s):  
Shuang Zhao ◽  
Qi Gao ◽  
Chengbo Rong ◽  
Shouxian Wang ◽  
Zhekun Zhao ◽  
...  

Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.


2021 ◽  
Author(s):  
Jennifer Mary Phillips ◽  
Soo Liang Ooi ◽  
Sokcheon Pak

Many mushroom species are consumed as food, while significant numbers are also utilised medicinally. Mushrooms are rich in nutrients and bioactive compounds. A growing body of in vitro, in vivo, and human research has revealed their therapeutic potentials. Some of the most notable benefits include such properties as anti-pathogenic, antioxidant, anti-inflammatory, immunomodulatory, gut microbiota enhancement, and angiotensin-converting enzyme 2 specificity. The use of medicinal mushrooms (MMs) as extracts in nutraceuticals and other health products are burgeoning. COVID-19 presents an opportunity to consider how, and if, specific MM compounds might be utilised therapeutically to mitigate associated risk factors, reduce disease severity, and support recovery. As vaccines become a mainstay, MMs may have the potential as an adjunct therapy to enhance immunity. In the context of COVID-19, this review explores current research about MMs to identify the key properties claimed to confer health benefits. Considered also are barriers or limitations that may impact general recommendations on MMs as therapy. It is contended that the extraction method used to isolate bioactive compounds must be a primary consideration for efficacious targeting of physiological endpoints. Mushrooms commonly available for culinary use and obtainable as a dietary supplement for medicinal purposes are included in this review. Specific properties related to these mushrooms have been considered due to their potential mediating effects on human exposure to the SARS CoV-2 virus and the ensuing COVID-19 disease processes.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2868
Author(s):  
Zhenhua Li ◽  
Xiaoyan Zhao ◽  
Xiaowei Zhang ◽  
Hongkai Liu

Sorghum is the fifth most commonly used cereal worldwide and is a rich source of many bioactive compounds. We summarized phenolic compounds and carotenoids, vitamin E, amines, and phytosterols in sorghum grains. Recently, with the development of detection technology, new bioactive compounds such as formononetin, glycitein, and ononin have been detected. In addition, multiple in vitro and in vivo studies have shown that sorghum grains have extensive bio-logical activities, such as antioxidative, anticancer, antidiabetic, antiinflammatory, and antiobesity properties. Finally, with the establishment of sorghum phenolic compounds database, the bound phenolics and their biological activities and the mechanisms of biological activities of sorghum bioactive compounds using clinical trials may be researched.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3531 ◽  
Author(s):  
Danielly C. Ferraz da Costa ◽  
Luciana Pereira Rangel ◽  
Julia Quarti ◽  
Ronimara A. Santos ◽  
Jerson L. Silva ◽  
...  

Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer—the most commonly occurring cancer in women—chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.


2021 ◽  
Vol 7 (5) ◽  
pp. 397
Author(s):  
Allen Grace Niego ◽  
Sylvie Rapior ◽  
Naritsada Thongklang ◽  
Olivier Raspé ◽  
Wuttichai Jaidee ◽  
...  

Macrofungi production and economic value have been increasing globally. The demand for macrofungi has expanded rapidly owing to their popularity among consumers, pleasant taste, and unique flavors. The presence of high quality proteins, polysaccharides, unsaturated fatty acids, minerals, triterpene sterols, and secondary metabolites makes macrofungi an important commodity. Macrofungi are well known for their ability to protect from or cure various health problems, such as immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia, hypercholesterolemia, and obesity. Many studies have demonstrated their medicinal properties, supported by both in vivo and in vitro experimental studies, as well as clinical trials. Numerous bioactive compounds isolated from mushrooms, such as polysaccharides, proteins, fats, phenolic compounds, and vitamins, possess strong bioactivities. Consequently, they can be considered as an important source of nutraceuticals. Numerous edible mushrooms have been studied for their bioactivities, but only a few species have made it to the market. Many species remain to be explored. The converging trends and popularity of eastern herbal medicines, natural/organic food product preference, gut-healthy products, and positive outlook towards sports nutrition are supporting the growth in the medicinal mushroom market. The consumption of medicinal mushrooms as functional food or dietary supplement is expected to markedly increase in the future. The global medicinal mushroom market size is projected to increase by USD 13.88 billion from 2018 to 2022. The global market values of promising bioactive compounds, such as lentinan and lovastatin, are also expected to rise. With such a market growth, mushroom nutraceuticals hold to be very promising in the years to come.


Author(s):  
Ana M. Džamić ◽  
Jelena S. Matejić

: The beneficial effect of plants in treating diabetes is not only well-known in traditional medicine but also confirmed in numerous scientific studies. The basic platform for testing the potential antidiabetic activity of traditionally known plants and their bioactive compounds is a set of in vitro, in vivo experiments, clinical trials and molecular docking studies. Basic assays usually measure enzyme inhibitory activity (α-amylase and α-glucosidase) and other aspects related to diabetes mellitus disease. Recently, the use of plant-derived compounds has proven useful in treating diabetes and reducing complications resulting from high blood sugar levels. The main goal is to establish an action mechanism of plant extracts or active compounds to find new antidiabetic drugs with less toxicological properties. This work aims to collect data and discuss the newest results in the area of plant extracts, compounds and antidiabetic effects using in vitro, in vivo and in silico models. The data covered in this review include plant extracts, polyphenols, terpenoids, saponins, phytosterols, and other bioactive compounds, with some of the investigated plants being less known. Isolation of new compounds might be a plentiful source for treatment and prevention of diabetes mellitus. Clinical trials with adequate monitoring give the best results of plants' product efficacy and safety. Many studies give us the confirmation for importance of patent and use medicinal herbs in the treatment of diabetes.


Author(s):  
Kosar Raoufinejad ◽  
Mehdi Rajabi

Clinical advantages of licorice (Glycyrrhiza spp.) have been investigated for several years. It has been traditionally used for a variety of disorders. Different constituents with various characteristics have been isolated from Glycyrrhiza spp. extracts. This review aimed to summarize the current knowledge on the pharmacological efficacy and safety of licorice extract constituents to treat the pathophysiology of acne vulgaris (AV) and the associated postinflammatory hyperpigmentation (PIH). Anti-androgenic, antimicrobial, anti-inflammatory, antioxidant, depigmenting, and skinturnover-accelerating properties have been identified for licorice extract which could be effective against AV and PIH through multiple pharmacological mechanisms. The active compounds responsible for these pharmacological activities, molecular mechanisms, safety profile, as well as the in vitro, in vivo, animal, and clinical studies are discussed. Licorice extract possesses broadspectrum activity and could be considered as an effective and safe option in the treatment of AV and its associated PIH. However, evidence-based clinical trials are required to prove its efficacy as well as safety. We hope this paper can provide new insights for further studies, particularly large controlled clinical trials.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6249
Author(s):  
Chao Su ◽  
Nan Li ◽  
Ruru Ren ◽  
Yingli Wang ◽  
Xiaojuan Su ◽  
...  

Gynostemma pentaphyllum (Thunb.) Makino (GP), also named Jiaogulan in Chinese, was known to people for its function in both health care and disease treatment. Initially and traditionally, GP was a kind of tea consumed by people for its pleasant taste and weight loss efficacy. With the passing of the centuries, GP became well known as more than just a tea. Until now, numbers of bioactive compounds, including saponins (also named gypenosides, GPS), polysaccharides (GPP), flavonoids, and phytosterols were isolated and identified in GP, which implied the great medicinal worth of this unusual tea. Both in vivo and in vitro tests, ranging from different cell lines to animals, indicated that GP possessed various biological activities including anti-cancer, anti-atherogenic, anti-dementia, and anti-Parkinson’s diseases, and it also had lipid-regulating effects as well as neuroprotection, hepatoprotective, and hypoglycemic properties. With the further development and utilization of GP, the research on the chemical constituents and pharmacological properties of GP were deepening day by day and had made great progress. In this review, the recent research progress in the bioactive compounds, especially gypenosides, and the pharmacological activities of GP were summarized, which will be quite useful for practical applications of GP in the treatment of human diseases.


Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


Sign in / Sign up

Export Citation Format

Share Document