Plant Products in the Prevention of Diabetes Mellitus

Author(s):  
Ana M. Džamić ◽  
Jelena S. Matejić

: The beneficial effect of plants in treating diabetes is not only well-known in traditional medicine but also confirmed in numerous scientific studies. The basic platform for testing the potential antidiabetic activity of traditionally known plants and their bioactive compounds is a set of in vitro, in vivo experiments, clinical trials and molecular docking studies. Basic assays usually measure enzyme inhibitory activity (α-amylase and α-glucosidase) and other aspects related to diabetes mellitus disease. Recently, the use of plant-derived compounds has proven useful in treating diabetes and reducing complications resulting from high blood sugar levels. The main goal is to establish an action mechanism of plant extracts or active compounds to find new antidiabetic drugs with less toxicological properties. This work aims to collect data and discuss the newest results in the area of plant extracts, compounds and antidiabetic effects using in vitro, in vivo and in silico models. The data covered in this review include plant extracts, polyphenols, terpenoids, saponins, phytosterols, and other bioactive compounds, with some of the investigated plants being less known. Isolation of new compounds might be a plentiful source for treatment and prevention of diabetes mellitus. Clinical trials with adequate monitoring give the best results of plants' product efficacy and safety. Many studies give us the confirmation for importance of patent and use medicinal herbs in the treatment of diabetes.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhuo Liu ◽  
Jing Gong ◽  
Wenya Huang ◽  
Fuer Lu ◽  
Hui Dong

In recent years, many studies of Momordica charantia (MC) in the treatment of diabetes mellitus (DM) and its complications have been reported. This article reviewed the effect and mechanism of MC against diabetes, including the results from in vitro and in vivo experiments and clinical trials. The common side effects of MC were also summarized. We hope that it might open up new ideas for further mechanism exploration and clinical application as well as provide a scientific theoretical basis for the development of drugs or foods derived from MC.


2020 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Anitha T A ◽  
Pakutharivu T ◽  
Nirubama K ◽  
Akshaya V

The traditional herbal medicines are mainly obtained from plants are used in the management of Diabetes mellitus. The main objective of this work was to assess the presence of phytochemical compounds and to evaluate the in vitro antidiabetic activity of isopropanolic extracts of Pimenta racemosa leaves by studying their α-amylase inhibitory activity and glucose transport across yeast cells. Screening of phytochemicals showed positive results for alkaloids, steroids, cardiac glycosides, terpenoids, reducing sugars, anthraquinones, and results of in vitro α-amylase inhibitory studies demonstrated there was a dose-dependent increase in percentage inhibitory activity by the isopropanolic leaf extracts of Pimenta racemosa. At a concentration of 1 mg/ml, the extract showed a percentage inhibition 33.6 and for 5 mg/ml it was 91.2. The glucose uptake study was also studied through yeast cells by analyzing theamount of glucose remaining in the medium after a specific time intervals. It serves as an indicator for the capability of isopropanolic leaf extracts of Pimenta racemosa to transport the glucose into yeast cells. As a result, we found that the isopropanolic leaf extract of Pimenta racemosa have inhibitory activity against αamylase and also, which is efficient in glucose uptake. This therapeutic potentiality of Pimenta racemosa could be exploited in the treatment of Type 2 Diabetes mellitus. Further studies are also required to elucidate whether the plant have antidiabetic potential by in vivo for corroborating the traditional claim of the plant.


2019 ◽  
Vol 28 (7) ◽  
pp. 967-972 ◽  
Author(s):  
Rachel Vanderschelden ◽  
Mayilone Sathialingam ◽  
Michael Alexander ◽  
Jonathan R. T. Lakey

The limited availability of human islets has led to the examination of porcine islets as a source of clinically suitable tissue for transplantation in patients with diabetes mellitus. Islets from porcine donors are commonly used in both in vitro and in vivo experiments studying diabetes mellitus. However, there are significant differences in quality and quantity of islet yield depending on donor pig age, as well as substantial differences in the costs of pancreas procurement in adult versus neonatal and juvenile pigs. In this study, we compared the total cost per islet of juvenile pig pancreata with that of neonatal and adult pigs. Although adult porcine pancreata yield, on average, more than five times the amount of islets than do juvenile and neonatal pancreata, we found that the high price of adult pigs led to the cost per islet being more than twice that of juvenile and neonatal islets (US $0.09 vs $0.04 and $0.02, respectively). In addition, neonatal and juvenile islets are advantageous in their scalability and retention of viability after culture. Our findings indicate that isolating neonatal and juvenile porcine islets is more cost-effective and scalable than isolating adult porcine islets.


2020 ◽  
Author(s):  
sabri ahmed cherrak ◽  
merzouk hafida ◽  
mokhtari soulimane nassima

A novel (COVID-19) responsible of acute respiratory infection closely related to SARS-CoV has recently emerged. So far there is no consensus for drug treatment to stop the spread of the virus. Discovery of a drug that would limit the virus expansion is one of the biggest challenges faced by the humanity in the last decades. In this perspective, testing existing drugs as inhibitors of the main COVID-19 protease is a good approach.Among natural phenolic compounds found in plants, fruit, and vegetables; flavonoids are the most abundant. Flavonoids, especially in their glycosylated forms, display a number of physiological activities, which makes them interesting to investigate as antiviral molecules.The flavonoids chemical structures were downloaded from PubChem and protease structure 6lu7 was from the Protein Data Bank site. Molecular docking study was performed using AutoDock Vina. Among the tested molecules Quercetin-3-O-rhamnoside showed the highest binding affinity (-9,7 kcal/mol). Docking studies showed that glycosylated flavonoids are good inhibitors for the covid-19 protease and could be further investigated by in vitro and in vivo experiments for further validation.


Author(s):  
Virender Kaur ◽  
Kumud Upadhyaya ◽  
Milind Pande

Objective: The early stage of diabetes mellitus type 2 is associated with postprandial hyperglycemia. The therapeutic approach involved in the treatment of type 2 diabetes mellitus is the use of agents that can decrease postprandial hyperglycemia by inhibiting carbohydrate digesting enzymes. In an effort of identifying herbal drugs which may become useful in the prevention or mitigation of diabetes, the antidiabetic activity of Ficus semicordata (FS) and its constituents were studied. The present study was undertaken in part to identify the potent antihyperglycemic fraction from the ethanol extract of the plant, using bioassay guided evaluation.Methods: The ethanol extract of Ficus semicordata were fractionated to obtain chloroform, ethyl acetate, n-butanol and ethanol extracts which were tested for alpha-amylase, alpha-glucosidase inhibitory, properties. Further fractionation of the more active ethanol fraction yielded isolates FS-1 and FS-2 which were tested for in vivo antidiabetic activity using Streptozotocin (STZ)-induced diabetic rats.Results: Ethanol extract from leaves of the plant showed notable alpha-amylase (IC50 = 3.352µg/ml and alpha-glycosidase inhibitory activity (IC50= 3.448µg/ml) as compared to standard acarbose (IC50 = 3.175µg/ml. Subfraction FS-1 and FS-2 which were tested for in vivo antidiabetic activity using acute STZ-induced diabetic rats significantly (*p<0.05, **p<0.01, *** p<0.001) reduced blood glucose level.Conclusion: The Ficus semicordata plant extracts and the fractionated components could be used as a natural antidiabetic after comprehensive in vitro and in vivo biological studies.


2021 ◽  
Vol 22 (2) ◽  
pp. 634
Author(s):  
Giuseppe Venturella ◽  
Valeria Ferraro ◽  
Fortunato Cirlincione ◽  
Maria Letizia Gargano

Medicinal mushrooms have important health benefits and exhibit a broad spectrum of pharmacological activities, including antiallergic, antibacterial, antifungal, anti-inflammatory, antioxidative, antiviral, cytotoxic, immunomodulating, antidepressive, antihyperlipidemic, antidiabetic, digestive, hepatoprotective, neuroprotective, nephroprotective, osteoprotective, and hypotensive activities. The growing interest in mycotherapy requires a strong commitment from the scientific community to expand clinical trials and to propose supplements of safe origin and genetic purity. Bioactive compounds of selected medicinal mushrooms and their effects and mechanisms in in vitro and in vivo clinical studies are reported in this review. Besides, we analyzed the therapeutic use and pharmacological activities of mushrooms.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2868
Author(s):  
Zhenhua Li ◽  
Xiaoyan Zhao ◽  
Xiaowei Zhang ◽  
Hongkai Liu

Sorghum is the fifth most commonly used cereal worldwide and is a rich source of many bioactive compounds. We summarized phenolic compounds and carotenoids, vitamin E, amines, and phytosterols in sorghum grains. Recently, with the development of detection technology, new bioactive compounds such as formononetin, glycitein, and ononin have been detected. In addition, multiple in vitro and in vivo studies have shown that sorghum grains have extensive bio-logical activities, such as antioxidative, anticancer, antidiabetic, antiinflammatory, and antiobesity properties. Finally, with the establishment of sorghum phenolic compounds database, the bound phenolics and their biological activities and the mechanisms of biological activities of sorghum bioactive compounds using clinical trials may be researched.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3531 ◽  
Author(s):  
Danielly C. Ferraz da Costa ◽  
Luciana Pereira Rangel ◽  
Julia Quarti ◽  
Ronimara A. Santos ◽  
Jerson L. Silva ◽  
...  

Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer—the most commonly occurring cancer in women—chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.


Author(s):  
Rita Marleta Dewi ◽  
Megawati Megawati ◽  
Lucia Dwi Antika

: Diabetes mellitus is the most common chronic metabolic disorder and is considered one of the leading causes of morbidity and mortality. The improperly-treated chronic hyperglycemia of diabetes has been related to several long-term complications and multiple organ failures, including nephropathy, which can lead to kidney failure, retinopathy with the potential loss of vision, and cardiovascular symptoms. Current commercially available synthetic glucose-lowering agents have been reported to have several adverse effects. Therefore, the search for alternative remedies such as medicinal plants and their active compounds have attracted attention. Chrysin is an active flavonoid that exists widely in various plants and diets and has been reported to possess pharmacological properties, including antidiabetic activity. Many studies have been conducted to characterize the antidiabetic of chrysin, as well as its potential pathways, in in vitro and in vivo experiments. Chrysin has shown promise as an antidiabetic agent in animal studies, thus, demonstrating its potential to be developed as an antidiabetic drug. This review discussed the antidiabetic action of chrysin and its mechanisms, including targeting different mechanisms such as stimulation of insulin signaling, blockage of endoplasmic reticulum stress and oxidative damage, promotion of skeletal glucose uptake, as well as modulation of apoptosis and autophagy signaling. Additionally, this review would be useful for further studies regarding the mechanism of work of plant derived-compound as a potential antidiabetic agent.


Sign in / Sign up

Export Citation Format

Share Document