scholarly journals Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3531 ◽  
Author(s):  
Danielly C. Ferraz da Costa ◽  
Luciana Pereira Rangel ◽  
Julia Quarti ◽  
Ronimara A. Santos ◽  
Jerson L. Silva ◽  
...  

Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer—the most commonly occurring cancer in women—chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.

Author(s):  
Marco Raffaele ◽  
Khaled Greish ◽  
Luca Vanella ◽  
Giuseppe Carota ◽  
Fatemah Bahman ◽  
...  

Background: Pomegranate is a fruit rich in bioactive compounds such as punicalagins, gallic acid, and ellagic acid derivatives. It has been widely used since ancient times in traditional medicine for a wide variety of diseases. It has been reported that bioactive compounds, such as polyphenols, are able to induce the expression of cytoprotective enzymes, including HO-1. The contribution of HO-1 activity to the prevention of intestinal inflammation has been shown in different models of Inflammatory bowel diseases (IBD). Objective: Aim of the present research was to investigate the molecular mechanisms involved in the beneficial effects of a pomegranate extract (PE), rich in bioactive compounds in intestinal inflammation. Methods: Caco-2 cells exposed to LPS and DSS induced colitis were chosen as convenient experimental models of intestinal inflammation. Results: Results obtained in our experimental conditions, showed that PE in vitro was able to induce HO-1 and to reduce cellular damage and oxidative stress through increase of GSH levels. Moreover, PE was able to decrease the pro-inflammatory marker IL-8 levels and to activate TIGAR pathway. The results obtained in vivo, in agreement with the data obtained in vitro, highlighted the ability of PE to reduce intestinal inflammation, preserve the colon length and histological features and reduce IL-6 levels compared to the DSS treated group. Conclusion: PE, rich in bioactive compounds, could contribute, as supportive therapy, to enhance the effects of the conventional therapeutic strategies to the management of IBD.


Oncology ◽  
1996 ◽  
Vol 53 (3) ◽  
pp. 175-181 ◽  
Author(s):  
Masakuni Noguchi ◽  
David P. Rose ◽  
Itsuo Miyazaki

2020 ◽  
Vol 20 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Tânia P. Almeida ◽  
Alice A. Ramos ◽  
Joana Ferreira ◽  
Amaya Azqueta ◽  
Eduardo Rocha

: Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and “combination chemotherapy” where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Madhulika Singh ◽  
Shankar Suman ◽  
Yogeshwer Shukla

Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenicin vitroandin vivomodels and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ming-Xuan Feng ◽  
Jian-Xin Hong ◽  
Qiang Wang ◽  
Yong-Yong Fan ◽  
Chi-Ting Yuan ◽  
...  

Abstract Bone is the most common site of distant relapse in breast cancer, leading to severe complications which dramatically affect the patients’ quality of life. It is believed that the crosstalk between metastatic breast cancer cells and osteoclasts is critical for breast cancer-induced osteolysis. In this study, the effects of dihydroartemisinin (DHA) on osteoclast formation, bone resorption, osteoblast differentiation and mineralization were initially assessed in vitro, followed by further investigation in a titanium-particle-induced osteolysis model in vivo. Based on the proved inhibitory effect of DHA on osteolysis, DHA was further applied to MDA-MB-231 breast cancer-induced mouse osteolysis model, with the underlying molecular mechanisms further investigated. Here, we verified for the first time that DHA suppressed osteoclast differentiation, F-actin ring formation and bone resorption through suppressing AKT/SRC pathways, leading to the preventive effect of DHA on titanium-particle-induced osteolysis without affecting osteoblast function. More importantly, we demonstrated that DHA inhibited breast tumor-induced osteolysis through inhibiting the proliferation, migration and invasion of MDA-MB-231 cells via modulating AKT signaling pathway. In conclusion, DHA effectively inhibited osteoclastogenesis and prevented breast cancer-induced osteolysis.


2021 ◽  
Vol 22 (17) ◽  
pp. 9279
Author(s):  
Inés Martínez-Pena ◽  
Pablo Hurtado ◽  
Nuria Carmona-Ule ◽  
Carmen Abuín ◽  
Ana Belén Dávila-Ibáñez ◽  
...  

Background: Cancer metastasis is a deathly process, and a better understanding of the different steps is needed. The shedding of circulating tumor cells (CTCs) and CTC-cluster from the primary tumor, its survival in circulation, and homing are key events of the metastasis cascade. In vitro models of CTCs and in vivo models of metastasis represent an excellent opportunity to delve into the behavior of metastatic cells, to gain understanding on how secondary tumors appear. Methods: Using the zebrafish embryo, in combination with the mouse and in vitro assays, as an in vivo model of the spatiotemporal development of metastases, we study the metastatic competency of breast cancer CTCs and CTC-clusters and the molecular mechanisms. Results: CTC-clusters disseminated at a lower frequency than single CTCs in the zebrafish and showed a reduced capacity to invade. A temporal follow-up of the behavior of disseminated CTCs showed a higher survival and proliferation capacity of CTC-clusters, supported by their increased resistance to fluid shear stress. These data were corroborated in mouse studies. In addition, a differential gene signature was observed, with CTC-clusters upregulating cell cycle and stemness related genes. Conclusions: The zebrafish embryo is a valuable model system to understand the biology of breast cancer CTCs and CTC-clusters.


2021 ◽  
Vol 23 (1) ◽  
pp. 129
Author(s):  
Huinan Qu ◽  
Da Qi ◽  
Xinqi Wang ◽  
Yuan Dong ◽  
Qiu Jin ◽  
...  

Claudin 6 (CLDN6) was found to be a breast cancer suppressor gene, which is lowly expressed in breast cancer and inhibits breast cancer cell proliferation upon overexpression. However, the mechanism by which CLDN6 inhibits breast cancer proliferation is unclear. Here, we investigated this issue and elucidated the molecular mechanisms by which CLDN6 inhibits breast cancer proliferation. First, we verified that CLDN6 was lowly expressed in breast cancer tissues and that patients with lower CLDN6 expression had a worse prognosis. Next, we confirmed that CLDN6 inhibited breast cancer proliferation through in vitro and in vivo experiments. As for the mechanism, we found that CLDN6 inhibited c–MYC–mediated aerobic glycolysis based on a metabolomic analysis of CLDN6 affecting cellular lactate levels. CLDN6 interacted with a transcriptional co–activator with PDZ-binding motif (TAZ) and reduced the level of TAZ, thereby suppressing c–MYC transcription, which led to a reduction in glucose uptake and lactate production. Considered together, our results suggested that CLDN6 suppressed c–MYC–mediated aerobic glycolysis to inhibit the proliferation of breast cancer by TAZ, which indicated that CLDN6 acted as a novel regulator of aerobic glycolysis and provided a theoretical basis for CLDN6 as a biomarker of progression in breast cancer.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Swee Keong Yeap ◽  
Hamidah Mohd Yusof ◽  
Nurul Elyani Mohamad ◽  
Boon Kee Beh ◽  
Wan Yong Ho ◽  
...  

Mung bean has been reported to have antioxidant, cytotoxic, and immunomodulatory effectsin vitro. Fermented products are reported to have enhanced immunomodulation and cancer chemopreventive effects. In this study, fermented mung bean treatmentsin vivowere studied by monitoring tumor development, spleen immunity, serum cytokine (interleukin 2 and interferon gamma) levels, and spleen/tumor antioxidant levels after injection with low and high risk 4T1 breast cancer cells. Pretreatment with fermented mung bean was associated with delayed tumor formation in low risk mice. Furthermore, this treatment was connected with higher serum anticancer cytokine levels, spleen T cell populations, splenocyte cytotoxicity, and spleen/tumor antioxidant levels. Histopathological evaluation of fermented mung bean treated tumor revealed lower event of mitotic division. On the other hand, antioxidant and nitric oxide levels that were significantly increased in the untreated mice were inhibited in the fermented mung bean treated groups. These results suggested that fermented mung bean has potential cancer chemoprevention effects through the stimulation of immunity, lipid peroxidation, and anti-inflammation.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Jun Tian ◽  
Vivian Wang ◽  
Ni Wang ◽  
Baharak Khadang ◽  
Julien Boudreault ◽  
...  

Abstract Background Cyclooxygenase 2 (COX-2) promotes stemness in triple negative breast cancer (TNBC), highlighting COX-2 as a promising therapeutic target in these tumors. However, to date, clinical trials using COX-2 inhibitors in breast cancer only showed variable patient responses with no clear significant clinical benefits, suggesting underlying molecular mechanisms contributing to resistance to COX-2 inhibitors. Methods By combining in silico analysis of human breast cancer RNA-seq data with interrogation of public patient databases and their associated transcriptomic, genomic, and clinical profiles, we identified COX-2 associated genes whose expression correlate with aggressive TNBC features and resistance to COX-2 inhibitors. We then assessed their individual contributions to TNBC metastasis and resistance to COX-2 inhibitors, using CRISPR gene knockout approaches in both in vitro and in vivo preclinical models of TNBC. Results We identified multiple COX-2 associated genes (TPM4, RGS2, LAMC2, SERPINB5, KLK7, MFGE8, KLK5, ID4, RBP1, SLC2A1) that regulate tumor lung colonization in TNBC. Furthermore, we found that silencing MFGE8 and KLK5/7 gene expression in TNBC cells markedly restored sensitivity to COX-2 selective inhibitor both in vitro and in vivo. Conclusions Together, our study supports the establishment and use of novel COX-2 inhibitor-based combination therapies as future strategies for TNBC treatment.


2021 ◽  
Author(s):  
Yan Liu ◽  
Ai Zhang ◽  
Ping-Ping Bao ◽  
Li Lin ◽  
Yina Wang ◽  
...  

Abstract Emerging evidence indicates that microRNAs (miRNAs) play a critical role in breast cancer development. We recently reported that a higher expression of miR-374b in tumor tissues was associated with a better disease-free survival of triple-negative breast cancer (TNBC). However, the functional significance and molecular mechanisms underlying the role of miR-374b in breast cancer are largely unknown. In this current study, we evaluated the biological functions and potential mechanisms of miR-374b in both TNBC and non-TNBC. We found that miR-374b was significantly downregulated in breast cancer tissues, compared to adjacent tissues. MiR-374b levels were also lower in breast cancer cell lines, as compared to breast epithelial cells. In vitro and in vivo studies demonstrated that miR-374b modulates the malignant behavior of breast cancer cells, such as cell proliferation in 2D and 3D, cell invasion ability, colony forming ability, and tumor growth in mice. By using bioinformatics tools, we predicted that miR-374b plays a role in breast cancer cells through negatively regulating cyclin D1 (CCND1) and transforming growth factor alpha (TGFA). We further confirmed that CCND1 and TGFA contribute to the malignant behavior of breast cancer cells in vitro and in vivo. Our rescue experiments showed that overexpressing CCND1 or TGFA reverses the phenotypes caused by miR-374b overexpression. Taken together, our studies suggest that miR-374b modulates malignant behavior of breast cancer cells by negatively regulating CCND1 and TGFA genes. The newly identified miR-374b-mediated CCND1 and TGFA gene silencing may facilitate a better understanding of the molecular mechanisms of breast cancer progression.


Sign in / Sign up

Export Citation Format

Share Document