scholarly journals Effects of Different Short-Term UV-B Radiation Intensities on Metabolic Characteristics of Porphyra haitanensis

2021 ◽  
Vol 22 (4) ◽  
pp. 2180
Author(s):  
Shimei Fu ◽  
Song Xue ◽  
Jun Chen ◽  
Shuai Shang ◽  
Hui Xiao ◽  
...  

The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.

2018 ◽  
Vol 39 (10) ◽  
pp. 1169-1177
Author(s):  
Elizabeth M. Leimer ◽  
Laura M. Tanenbaum ◽  
Dana L. Nettles ◽  
Richard D. Bell ◽  
Mark E. Easley ◽  
...  

Background: Post-traumatic osteoarthritis (PTOA) is a frequent complication in patients with a previous traumatic joint injury, and the pathophysiology is not well understood. The goal of this study was to characterize the biochemical signature of amino acids, peptides, and amino acid metabolites in ankle synovial fluid following intra-articular fracture. Methods: Synovial fluid from both the injured and contralateral ankles of 19 patients with an intra-articular ankle fracture was obtained and analyzed via metabolic profiling. Follow-up analysis was performed after 6 months in 7 of these patients. Results: Statistical comparisons between injured and contralateral ankles revealed that 19 of the 66 measured amino acids, peptides, and amino acid metabolites were significantly elevated at time of fracture. Metabolites associated with glutathione metabolism exhibited the most elevated mean-fold changes, indicating a possible role for oxidative stress in fractured ankles. None of the metabolites elevated at baseline were significantly elevated after 6 months, but 6 metabolites had mean-fold changes greater than 2.1 at this time point. Multiple metabolites also exhibited significant correlations ( r > 0.575) with matrix metalloproteinase-1 and -9. Conclusion: These results indicate the presence of amino acid metabolic products in the setting of ankle fracture and suggest that these changes in amino acid metabolism may be chronic and indicate a role for inflammation and collagen degradation in disease progression. Clinical Relevance: Changes in amino acid metabolism following intra-articular fracture may contribute to the progression to PTOA. This knowledge may allow for the identification and early treatment of patients at risk of developing PTOA. Level of Evidence: Level III, comparative series.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 449-451 ◽  
Author(s):  
G. Peter ◽  
H. Angst ◽  
U. Koch

Free and protein-bound amino acids in serum and scales were investigated. In serum the bound amino acids of psoriatics are significantly higher with exception of Pro, Met, Tyr and Phe in contrast to normal subjects. For free amino acids the differences between normal subjects and psoriatics found in serum and scales are not significant. Results are discussed in relation to the single amino acids and the biochemical correlations are outlined which takes the pathological process as a basis.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


PEDIATRICS ◽  
1961 ◽  
Vol 27 (4) ◽  
pp. 539-550 ◽  
Author(s):  
William L. Nyhan ◽  
Margaret Borden ◽  
Barton Childs

The amino acids of blood and urine have been investigated using chromatography on cation exchange columns in the study of a patient with idiopathic hyperglycinemia. Marked increases in concentrations of glycine, serine, alanine, isoleucine and valine were found in the plasma. These changes were not reflected in increased excretion of these amino acids in the urine (with the exception of glycine). Restriction of the dietary intake of protein resulted in a decrease in the concentrations of glycine and other amino acids in the blood and urine, and there was a concomitant decrease in the frequency and severity of episodes of acute illness. The oral administration of leucine was found to induce a decrease in the levels of a number of amino acids in the patient and in controls. Continued decrease during the 3 hours of observation was noted for serine, isoleucine and valine. A mild but progressive decrease in threonine concentration was observed in the controls, while in the patient the concentration increased after the administration of leucine. Decreased levels at 1½ hours, returning toward the fasting levels at 3 hours, were observed for alanine, taurine and glycine. These apparently normal responses to leucine loads were not mediated through increase in the urinary excretion of the amino acids involved, and the data are interpreted to indicate entry of these amino acids into cells.


2019 ◽  
Vol 316 (4) ◽  
pp. E660-E673 ◽  
Author(s):  
Katrine D. Galsgaard ◽  
Marie Winther-Sørensen ◽  
Jens Pedersen ◽  
Sasha A. S. Kjeldsen ◽  
Mette M. Rosenkilde ◽  
...  

Glucagon and insulin are important regulators of blood glucose. The importance of insulin receptor signaling for alpha-cell secretion and of glucagon receptor signaling for beta-cell secretion is widely discussed and of clinical interest. Amino acids are powerful secretagogues for both hormones, and glucagon controls amino acid metabolism through ureagenesis. The role of insulin in amino acid metabolism is less clear. Female C57BL/6JRj mice received an insulin receptor antagonist (IRA) (S961; 30 nmol/kg), a glucagon receptor antagonist (GRA) (25-2648; 100 mg/kg), or both GRA and IRA (GRA + IRA) 3 h before intravenous administration of similar volumes of saline, glucose (0.5 g/kg), or amino acids (1 µmol/g) while anesthetized with isoflurane. IRA caused basal hyperglycemia, hyperinsulinemia, and hyperglucagonemia. Unexpectedly, IRA lowered basal plasma concentrations of amino acids, whereas GRA increased amino acids, lowered glycemia, and increased glucagon but did not influence insulin concentrations. After administration of GRA + IRA, insulin secretion was significantly reduced compared with IRA administration alone. Blood glucose responses to a glucose and amino acid challenge were similar after vehicle and GRA + IRA administration but greater after IRA and lower after GRA. Anesthesia may have influenced the results, which otherwise strongly suggest that both hormones are essential for the maintenance of glucose homeostasis and that the secretion of both is regulated by powerful negative feedback mechanisms. In addition, insulin limits glucagon secretion, while endogenous glucagon stimulates insulin secretion, revealed during lack of insulin autocrine feedback. Finally, glucagon receptor signaling seems to be of greater importance for amino acid metabolism than insulin receptor signaling.


2020 ◽  
Vol 26 (4) ◽  
pp. 277-287
Author(s):  
Christine Leary ◽  
Roger G Sturmey

Abstract The pattern of metabolism by early embryos in vitro has been linked to a range of phenotypes, including viability. However, the extent to which metabolic function of embryos is modified by specific methods used during ART has yet to be fully described. This study has sought to determine if the mode of fertilization used to create embryos affects subsequent embryo metabolism of substrates. A metabolic profile, including consumption of key substrates and the endogenous triglyceride content of individual IVF and ICSI supernumerary embryos, was assessed and compared. Embryo development and quality was also recorded. All embryos were donated at a single clinical IVF center, on Day 5, from 36 patients aged 18–38 years, The data revealed that consumption of glucose and pyruvate, and production of lactate, did not differ between embryos created by IVF or ICSI. Similarly, the mode of insemination did not impact on the triglyceride content of embryos. However, ICSI-derived embryos displayed a more active turnover of amino acids (P = 0.023), compared to IVF embryos. The specific amino acids produced in higher quantities from ICSI compared to IVF embryos were aspartate (P = 0.016), asparagine (P = 0.04), histidine (P = 0.021) and threonine (P = 0.009) while leucine consumption was significantly lower (P = 0.04). However, importantly neither individual nor collective differences in amino acid metabolism were apparent for sibling oocytes subjected to either mode of fertilization. Embryo morphology (the number of top grade embryos) and development (proportion reaching the blastocyst stage) were comparable in patients undergoing IVF and ICSI. In conclusion, the microinjection of spermatozoa into oocytes does not appear to have an impact on subsequent metabolism and viability. Observed differences in amino acid metabolism may be attributed to male factor infertility of the patients rather than the ICSI procedure per se.


1985 ◽  
Vol 19 (1) ◽  
pp. 86-91 ◽  
Author(s):  
Drew G Kelts ◽  
Denise Ney ◽  
Carolyn Bay ◽  
Jean-Marie Saudubray ◽  
William L Nyhan

1998 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Y. G. Jung ◽  
T. Sakata ◽  
E. S. Lee ◽  
Y. Fukui

The uptake and synthesis of 19 amino acids by fresh or frozen–thawed bovine blastocysts produced by parthenogenesis (PT) or in vitro fertilization (IVF) were compared in the present study. Fresh blastocysts, 180 h after IVF or PT activation, and frozen–thawed blastocysts, 168 h old and cultured for 12 h post-thawing, were cultured in synthetic oviduct fluid medium (SOFM) containing polyvinyl alcohol (PVA) with both essential and non-essential amino acids (EAA and NEAA, respectively) (Medium 1: M1) or SOFM containing PVA with only EAA (Medium 2: M2). In Experiment 1, when fresh or frozen–thawed PT blastocysts were cultured in M1, the uptake of glutamate (in fresh only), aspartate and arginine, and the synthesis of glutamine and alanine were significantly enhanced. In the culture with M2, serine, asparagine, glutamate, glutamine, glycine, arginine and alanine were significantly taken up. It was found that the glutamine concentrations was significantly higher (P < 0.001) in the culture medium drops containing embryos than in the drops without embryos. In Experiment 2, when PT blastocysts were cultured in M1, the uptake of aspartate and synthesis of alanine were greater (P < 0.01) than those by IVF blastocysts. When M2 was used, a significant (P < 0.01) production of serine, asparagine, glutamate, glutamine and alanine, and the uptake of arginine by PT blastocysts were observed. In Experiment 3, when IVF blastocysts were cultured in M1, fresh blastocysts depleted more aspartate and glutamate, and produced more glutamine and alanine than frozen–thawed blastocysts. When cultured in M2, frozen–thawed blastocysts depleted more threonine (P < 0.01) than fresh blastocysts. These results indicate that the uptake and synthesis of amino acids were different in fresh or frozen–thawed bovine blastocysts derived from PT or IVF. These differences in amino acid metabolism may be related to the viability of the blastocysts.


Sign in / Sign up

Export Citation Format

Share Document