scholarly journals Red-Edge Excitation Shift Spectroscopy (REES): Application to Hidden Bound States of Ligands in Protein–Ligand Complexes

2021 ◽  
Vol 22 (5) ◽  
pp. 2582
Author(s):  
Md Lutful Kabir ◽  
Feng Wang ◽  
Andrew H. A. Clayton

Ligand-protein binding is responsible for the vast majority of bio-molecular functions. Most experimental techniques examine the most populated ligand-bound state. The determination of less populated, intermediate, and transient bound states is experimentally challenging. However, hidden bound states are also important because these can strongly influence ligand binding and unbinding processes. Here, we explored the use of a classical optical spectroscopic technique, red-edge excitation shift spectroscopy (REES) to determine the number, population, and energetics associated with ligand-bound states in protein–ligand complexes. We describe a statistical mechanical model of a two-level fluorescent ligand located amongst a finite number of discrete protein microstates. We relate the progressive emission red shift with red-edge excitation to thermodynamic parameters underlying the protein–ligand free energy landscape and to photo-physical parameters relating to the fluorescent ligand. We applied the theoretical model to published red-edge excitation shift data from small molecule inhibitor–kinase complexes. The derived thermodynamic parameters allowed dissection of the energetic contribution of intermediate bound states to inhibitor–kinase interactions.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Márcio M. Cunha ◽  
Edilberto O. Silva

In this manuscript, we study the relativistic quantum mechanics of an electron in external fields in the spinning cosmic string spacetime. We obtain the Dirac equation and write the first- and second-order equations from it, and then, we solve these equations for bound states. We show that there are bound state solutions for the first-order equation Dirac. For the second-order equation, we obtain the corresponding wave functions, which depend on the Kummer functions. Then, we determine the energies of the particle. We examine the behavior of the energies as a function of the physical parameters of the model, such as rotation, curvature, magnetic field, Aharonov-Bohm flux, and quantum numbers. We find that, depending on the values of these parameters, there are energy nonpermissible levels.


2012 ◽  
Vol 57 (4) ◽  
pp. 911-920
Author(s):  
Bernard Nowak ◽  
Zbigniew Kuczera

Abstract The present paper introduces a method for calculating the thermal power of DV-290 mining air cooler’s evaporator. The power usually differs from the nominal power given by the manufacturer. The thermodynamic parameters of cooled air are not obtained as a result of in situ measurements, but in indirect manner that is by determining the evaporation and condensation’s pressure values of R407C refrigerant. The pressure dependencies formulated as a function of air enthalpy at the evaporator’s inlet were obtained using calculations of a computer program which solves the system of equations describing heat and mass transfer in the refrigerator’s compressor on the basis of previous measurements of air performed before and after its cooling. The obtained dependencies are demonstrated in a graphical (fig. 2 and fig. 3) and analytical (the regression equations (19) and (20)) manner, the values of correlation coefficients are also presented. For the known evaporation and condensation pressure values of the refrigerant, and thus for its basic physical parameters the complete thermal power of the evaporator was determined, that is its: air cooling overt power, dehumidification occult power, temperature, relative humidity and specific humidity of air after its cooling. In addition, using the mentioned method, the capacity of DV-290 refrigerator’s evaporator is provided for the given thermodynamic parameters of air before cooling, along with air thermodynamic parameters after cooling.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2005 ◽  
Vol 14 (06) ◽  
pp. 931-947 ◽  
Author(s):  
F. PILOTTO ◽  
M. DILLIG

We investigate the influence of retardation effects on covariant 3-dimensional wave functions for bound hadrons. Within a quark-(scalar) diquark representation of a baryon, the four-dimensional Bethe–Salpeter equation is solved for a 1-rank separable kernel which simulates Coulombic attraction and confinement. We project the manifestly covariant bound state wave function into three dimensions upon integrating out the non-static energy dependence and compare it with solutions of three-dimensional quasi-potential equations obtained from different kinematical projections on the relative energy variable. We find that for long-range interactions, as characteristic in QCD, retardation effects in bound states are of crucial importance.


Biochemistry ◽  
1996 ◽  
Vol 35 (41) ◽  
pp. 13426-13433 ◽  
Author(s):  
Suranjana Guha ◽  
Satinder S. Rawat ◽  
Amitabha Chattopadhyay ◽  
Bhabatarak Bhattacharyya

1992 ◽  
Vol 07 (09) ◽  
pp. 1935-1951 ◽  
Author(s):  
G.A. KOZLOV

A systematic discussion of the probability of eta and KL bound-state decays—[Formula: see text] and [Formula: see text](l=e, μ)—within a three-dimensional reduction to the two-body quantum field theory is presented. The bound-state vertex function depends on the relative momentum of constituent-like particles. A structure-transition form factor is defined by a confinement-type quark-antiquark wave function. The phenomenology of this kind of decays is analyzed.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Marcel J Tauchert ◽  
Jean-Baptiste Fourmann ◽  
Reinhard Lührmann ◽  
Ralf Ficner

The DEAH-box helicase Prp43 is a key player in pre-mRNA splicing as well as the maturation of rRNAs. The exact modus operandi of Prp43 and of all other spliceosomal DEAH-box RNA helicases is still elusive. Here, we report crystal structures of Prp43 complexes in different functional states and the analysis of structure-based mutants providing insights into the unwinding and loading mechanism of RNAs. The Prp43•ATP-analog•RNA complex shows the localization of the RNA inside a tunnel formed by the two RecA-like and C-terminal domains. In the ATP-bound state this tunnel can be transformed into a groove prone for RNA binding by large rearrangements of the C-terminal domains. Several conformational changes between the ATP- and ADP-bound states explain the coupling of ATP hydrolysis to RNA translocation, mainly mediated by a β-turn of the RecA1 domain containing the newly identified RF motif. This mechanism is clearly different to those of other RNA helicases.


2007 ◽  
Vol 22 (39) ◽  
pp. 2979-2992 ◽  
Author(s):  
JIAO-KAI CHEN ◽  
ZHENG-XIN TANG ◽  
QING-DONG CHEN

The general form of the Bethe–Salpeter wave functions for bound states comprising one scalar constituent and one fermion, or two scalars is presented. Using the reduced Salpeter equation obtained, we can work out the effective nonrelativistic potentials. And one new version of reduced Bethe–Salpeter equation is proposed by extending Gross approximation.


2015 ◽  
Vol 24 (14) ◽  
pp. 1550102 ◽  
Author(s):  
Haryanto M. Siahaan

In this paper, we show the instability of a charged massive scalar field in bound states around Kerr–Sen black holes. By matching the near and far region solutions of the radial part in the corresponding Klein–Gordon equation, one can show that the frequency of bound state scalar fields contains an imaginary component which gives rise to an amplification factor for the fields. Hence, the unstable modes for a charged and massive scalar perturbation in Kerr–Sen background can be shown.


2015 ◽  
Vol 70 (4) ◽  
pp. 245-249 ◽  
Author(s):  
Hassan Hassanabadi ◽  
Antonio Soares de Castro

AbstractWith a general mixing of vector and scalar couplings in a two-dimensional world, a short-range potential is used to explore certain features of the bound states of a spinless particle. Bound-state solutions are found in terms of the Gauss hypergeometric series when the potential parameters obey a certain constraint relation limiting the dosage of a vector coupling. The appearance of the Schiff–Snyder–Weinberg effect for a strong vector coupling and a short-range potential as well as its suppression by the addition of a scalar coupling is discussed.


Sign in / Sign up

Export Citation Format

Share Document