PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem

Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5157-5165 ◽  
Author(s):  
T. Vernoux ◽  
J. Kronenberger ◽  
O. Grandjean ◽  
P. Laufs ◽  
J. Traas

The process of organ positioning has been addressed, using the pin-formed 1 (pin1) mutant as a tool. PIN1 is a transmembrane protein involved in auxin transport in Arabidopsis. Loss of function severely affects organ initiation, and pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem. This phenotype, combined with the proposed role of PIN1 in hormone transport, makes the mutant an ideal tool to study organ formation and phyllotaxis, and here we present a detailed analysis of the molecular modifications at the shoot apex caused by the mutation. We show that meristem structure and function are not severely affected in the mutant. Major alterations, however, are observed at the periphery of the pin1 meristem, where organ initiation should occur. Although two very early markers of organ initiation, LEAFY and AINTEGUMENTA, are expressed at the periphery of the mutant meristem, the cells are not recruited into distinct primordia. Instead a ring-like domain expressing those primordium specific genes is observed around the meristem. This ring-like domain also expresses a boundary marker, CUP-SHAPED COTYLEDON 2, involved in organ separation, showing that the zone at the meristem periphery has a hybrid identity. This implies that PIN1 is not only involved in organ outgrowth, but that it is also necessary for organ separation and positioning. A model is presented in which PIN1 and the local distribution of auxin control phyllotaxis.

2021 ◽  
Vol 22 (5) ◽  
pp. 2732
Author(s):  
Nadine Reichhart ◽  
Vladimir M. Milenkovic ◽  
Christian H. Wetzel ◽  
Olaf Strauß

The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.


2013 ◽  
Vol 27 (12) ◽  
pp. 2041-2054 ◽  
Author(s):  
Xilong Li ◽  
Michael J. Large ◽  
Chad J. Creighton ◽  
Rainer B. Lanz ◽  
Jae-Wook Jeong ◽  
...  

Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII; NR2F2) is an orphan nuclear receptor involved in cell-fate specification, organogenesis, angiogenesis, and metabolism. Ablation of COUP-TFII in the mouse uterus causes infertility due to defects in embryo attachment and impaired uterine stromal cell decidualization. Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown. We observed that, as in mice, COUP-TFII is robustly expressed in the endometrial stroma of healthy women, and its expression is reduced in the ectopic lesions of women with endometriosis. To interrogate the role of COUP-TFII in human endometrial function, we used a small interfering RNA-mediated loss of function approach in primary human endometrial stromal cells. Attenuation of COUP-TFII expression did not completely block decidualization; rather it had a selective effect on gene expression. To better elucidate the role of COUP-TFII in endometrial stroma cell biology, the COUP-TFII transcriptome was defined by pairing microarray comparison with chromatin immunoprecipitation followed by deep sequencing. Gene ontology analysis demonstrates that COUP-TFII regulates a subset of genes in endometrial stroma cell decidualization such as those involved in cell adhesion, angiogenesis, and inflammation. Importantly this analysis shows that COUP-TFII plays a role in controlling the expression of inflammatory cytokines. The determination that COUP-TFII plays a role in inflammation may add insight into the role of COUP-TFII in embryo implantation and in endometrial diseases such as endometriosis.


2016 ◽  
Vol 9 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Upasana Shokal ◽  
Ioannis Eleftherianos

Despite important progress in identifying the molecules that participate in the immune response of Drosophila melanogaster to microbial infections, the involvement of thioester-containing proteins (TEPs) in the antibacterial immunity of the fly is not fully clarified. Previous studies mostly focused on identifying the function of TEP2, TEP3 and TEP6 molecules in the D. melanogaster immune system. Here, we investigated the role of TEP4 in the regulation and function of D. melanogaster host defense against 2 virulent pathogens from the genus Photorhabdus, i.e. the insect pathogenic bacterium Photorhabdus luminescens and the emerging human pathogen P. asymbiotica. We demonstrate that Tep4 is strongly upregulated in adult flies following the injection of Photorhabdus bacteria. We also show that Tep4 loss-of-function mutants are resistant to P. luminescens but not to P. asymbiotica infection. In addition, we find that inactivation of Tep4 results in the upregulation of the Toll and Imd immune pathways, and the downregulation of the Jak/Stat and Jnk pathways upon Photorhabdus infection. We document that loss of Tep4 promotes melanization and phenoloxidase activity in the mutant flies infected with Photorhabdus. Together, these findings generate novel insights into the immune role of TEP4 as a regulator and effector of the D. melanogaster antibacterial immune response.


Author(s):  
Diana Hamdan ◽  
Lisa A. Robinson

Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines are key drivers of this process. CX3CL1 (fractalkine) is one of two unique chemokines synthesized as a transmembrane protein which undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, CX3CR1, CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form, and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.


Development ◽  
2000 ◽  
Vol 127 (16) ◽  
pp. 3619-3629 ◽  
Author(s):  
U. Weber ◽  
N. Paricio ◽  
M. Mlodzik

Jun acts as a signal-regulated transcription factor in many cellular decisions, ranging from stress response to proliferation control and cell fate induction. Genetic interaction studies have suggested that Jun and JNK signaling are involved in Frizzled (Fz)-mediated planar polarity generation in the Drosophila eye. However, simple loss-of-function analysis of JNK signaling components did not show comparable planar polarity defects. To address the role of Jun and JNK in Fz signaling, we have used a combination of loss- and gain-of-function studies. Like Fz, Jun affects the bias between the R3/R4 photoreceptor pair that is critical for ommatidial polarity establishment. Detailed analysis of jun(−) clones reveals defects in R3 induction and planar polarity determination, whereas gain of Jun function induces the R3 fate and associated polarity phenotypes. We find also that affecting the levels of JNK signaling by either reduction or overexpression leads to planar polarity defects. Similarly, hypomorphic allelic combinations and overexpression of the negative JNK regulator Puckered causes planar polarity eye phenotypes, establishing that JNK acts in planar polarity signaling. The observation that Dl transcription in the early R3/R4 precursor cells is deregulated by Jun or Hep/JNKK activation, reminiscent of the effects seen with Fz overexpression, suggests that Jun is one of the transcription factors that mediates the effects of fz in planar polarity generation.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax1031 ◽  
Author(s):  
Lei Bai ◽  
Jiazhen Dong ◽  
Zhenqiu Liu ◽  
Youliang Rao ◽  
Pinghui Feng ◽  
...  

Helicases play pivotal roles in fundamental biological processes, and posttranslational modifications regulate the localization, function, and stability of helicases. Here, we report that methionine oxidation of representative helicases, including DNA and RNA helicases of viral (ORF44 of KSHV) and cellular (MCM7 and RIG-I) origin, promotes their expression and functions. Cellular viperin, a major antiviral interferon-stimulated gene whose functions beyond host defense remain largely unknown, catalyzes the methionine oxidation of these helicases. Moreover, biochemical studies entailing loss-of-function mutations of helicases and a pharmacological inhibitor interfering with lipid metabolism and, hence, decreasing viperin activity indicate that methionine oxidation potently increases the stability and enzyme activity of these helicases that are critical for DNA replication and immune activation. Our work uncovers a pivotal role of viperin in catalyzing the methionine oxidation of helicases that are implicated in diverse fundamental biological processes.


2015 ◽  
Vol 209 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Elle C. Roberson ◽  
William E. Dowdle ◽  
Aysegul Ozanturk ◽  
Francesc R. Garcia-Gonzalo ◽  
Chunmei Li ◽  
...  

The Meckel syndrome (MKS) complex functions at the transition zone, located between the basal body and axoneme, to regulate the localization of ciliary membrane proteins. We investigated the role of Tmem231, a two-pass transmembrane protein, in MKS complex formation and function. Consistent with a role in transition zone function, mutation of mouse Tmem231 disrupts the localization of proteins including Arl13b and Inpp5e to cilia, resulting in phenotypes characteristic of MKS such as polydactyly and kidney cysts. Tmem231 and B9d1 are essential for each other and other complex components such as Mks1 to localize to the transition zone. As in mouse, the Caenorhabditis elegans orthologue of Tmem231 localizes to and controls transition zone formation and function, suggesting an evolutionarily conserved role for Tmem231. We identified TMEM231 mutations in orofaciodigital syndrome type 3 (OFD3) and MKS patients that compromise transition zone function. Thus, Tmem231 is critical for organizing the MKS complex and controlling ciliary composition, defects in which cause OFD3 and MKS.


Author(s):  
Charles Nelson ◽  
Victor Ambros

Abstract The let-7 gene encodes a highly conserved microRNA with critical functions integral to cell fate specification and developmental progression in diverse animals. In Caenorhabditis elegans, let-7 is a component of the heterochronic (developmental timing) gene regulatory network, and loss-of-function mutations of let-7 result in lethality during the larval to adult transition due to misregulation of the conserved let-7 target, lin-41. To date, no bilaterian animal lacking let-7 has been characterized. In this study, we identify a cohort of nematode species within the genus Caenorhabditis, closely related to C. elegans, that lack the let-7 microRNA, owing to absence of the let-7 gene. Using C. sulstoni as a representative let-7-lacking species to characterize normal larval development in the absence of let-7, we demonstrate that, except for the lack of let-7, the heterochronic gene network is otherwise functionally conserved. We also report that species lacking let-7 contain a group of divergent let-7 paralogs—also known as the let-7-family of microRNAs—that have apparently assumed the role of targeting the lin-41 mRNA.


Author(s):  
Mylène Zarka ◽  
Eric Haÿ ◽  
Martine Cohen-Solal

YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2408
Author(s):  
Valeria Manganelli ◽  
Agostina Longo ◽  
Vincenzo Mattei ◽  
Serena Recalchi ◽  
Gloria Riitano ◽  
...  

ER lipid raft-associated protein 1 (ERLIN1) and 2 (ERLIN2) are 40 kDa transmembrane glycoproteins belonging to the family of prohibitins, containing a PHB domain. They are generally localized in the endoplasmic reticulum (ER), where ERLIN1 forms a heteroligomeric complex with its closely related ERLIN2. Well-defined functions of ERLINS are promotion of ER-associated protein degradation, mediation of inositol 1,4,5-trisphosphate (IP3) receptors, processing and regulation of lipid metabolism. Until now, ERLINs have been exclusively considered protein markers of ER lipid raft-like microdomains. However, under pathophysiological conditions, they have been described within mitochondria-associated endoplasmic reticulum membranes (MAMs), tethering sites between ER and mitochondria, characterized by the presence of specialized raft-like subdomains enriched in cholesterol and gangliosides, which play a key role in the membrane scrambling and function. In this context, it is emerging that ER lipid raft-like microdomains proteins, i.e., ERLINs, may drive mitochondria-ER crosstalk under both physiological and pathological conditions by association with MAMs, regulating the two main processes underlined, survival and death. In this review, we describe the role of ERLINs in determining cell fate by controlling the “interchange” between apoptosis and autophagy pathways, considering that their alteration has a significant impact on the pathogenesis of several human diseases.


Sign in / Sign up

Export Citation Format

Share Document