scholarly journals Xyloglucan Oligosaccharides Hydrolysis by Exo-Acting Glycoside Hydrolases from Hyperthermophilic Microorganism Saccharolobus solfataricus

2021 ◽  
Vol 22 (7) ◽  
pp. 3325
Author(s):  
Nicola Curci ◽  
Andrea Strazzulli ◽  
Roberta Iacono ◽  
Federica De De Lise ◽  
Luisa Maurelli ◽  
...  

In the field of biocatalysis and the development of a bio-based economy, hemicellulases have attracted great interest for various applications in industrial processes. However, the study of the catalytic activity of the lignocellulose-degrading enzymes needs to be improved to achieve the efficient hydrolysis of plant biomasses. In this framework, hemicellulases from hyperthermophilic archaea show interesting features as biocatalysts and provide many advantages in industrial applications thanks to their stability in the harsh conditions encountered during the pretreatment process. However, the hemicellulases from archaea are less studied compared to their bacterial counterpart, and the activity of most of them has been barely tested on natural substrates. Here, we investigated the hydrolysis of xyloglucan oligosaccharides from two different plants by using, both synergistically and individually, three glycoside hydrolases from Saccharolobus solfataricus: a GH1 β-gluco-/β-galactosidase, a α-fucosidase belonging to GH29, and a α-xylosidase from GH31. The results showed that the three enzymes were able to release monosaccharides from xyloglucan oligosaccharides after incubation at 65 °C. The concerted actions of β-gluco-/β-galactosidase and the α-xylosidase on both xyloglucan oligosaccharides have been observed, while the α-fucosidase was capable of releasing all α-linked fucose units from xyloglucan from apple pomace, representing the first GH29 enzyme belonging to subfamily A that is active on xyloglucan.

2019 ◽  
Vol 20 (19) ◽  
pp. 4902 ◽  
Author(s):  
Christian Roth ◽  
Olga V. Moroz ◽  
Johan P. Turkenburg ◽  
Elena Blagova ◽  
Jitka Waterman ◽  
...  

Amylases are probably the best studied glycoside hydrolases and have a huge biotechnological value for industrial processes on starch. Multiple amylases from fungi and microbes are currently in use. Whereas bacterial amylases are well suited for many industrial processes due to their high stability, fungal amylases are recognized as safe and are preferred in the food industry, although they lack the pH tolerance and stability of their bacterial counterparts. Here, we describe three amylases, two of which have a broad pH spectrum extending to pH 8 and higher stability well suited for a broad set of industrial applications. These enzymes have the characteristic GH13 α-amylase fold with a central (β/α)8-domain, an insertion domain with the canonical calcium binding site and a C-terminal β-sandwich domain. The active site was identified based on the binding of the inhibitor acarbose in form of a transglycosylation product, in the amylases from Thamnidium elegans and Cordyceps farinosa. The three amylases have shortened loops flanking the nonreducing end of the substrate binding cleft, creating a more open crevice. Moreover, a potential novel binding site in the C-terminal domain of the Cordyceps enzyme was identified, which might be part of a starch interaction site. In addition, Cordyceps farinosa amylase presented a successful example of using the microseed matrix screening technique to significantly speed-up crystallization.


2019 ◽  
Author(s):  
◽  
Mpho Stephen Mafa

The current study investigated the biochemical properties of endo-glucanase (GH5E), exo-glucanase (GH5D), xylanase (GH5H) and endo-glucanase/xylanase (GH45), derived from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) for their potential role in the biotechnology industry. All these enzymes, except GH5D, exhibited activities on cellulosic and xylan-rich polymeric substrates, which only displayed activity on p-nitrophenyl cellobioside. GH5D, GH5E, GH5H and GH45 enzymes retained more than 80% of their activities at pH 5.5 and also retained more than 80% of their activities at 40ºC. Furthermore, these enzymes were thermostable at 37ºC for 72 hours. GH5E, GH5H and GH45 were generally stable over a range of metal-ion. The kinetic parameters for GH5E were 5.68 mg/ml (KM) and 34.36 U/mg protein (Vmax). GH5D activity did not follow classical Michaelis-Menten kinetics, suggesting product inhibition. GH5H displayed KM values of 5.53, 95.03 and 2.10 mg/ml and Vmax values of 112.36, 144.45 and 180.32 U/mg protein on beechwood xylan, CMC, and xyloglucan, respectively. GH45 displayed a KM of 6.94 mg/ml and a Vmax of 12.30 U/mg protein on CMC. GH5D [cellobiohydrolase (CBH)] and a commercial CBHII (GH6) enzyme outperformed a commercial CBHI (GH7) enzyme when these enzymes hydrolysed β-glucan. GH5D and CBHII also displayed a higher degree of synergy on β-glucan but failed to show synergy on Avicel. We therefore concluded that GH5D and CBHII are β-glucan-specific cellobiohydrolases. The corncob (CC) and sweet sorghum bagasse (SSB) substrates were pretreated with lime, NaOH and NaClO2. Subsequent to pretreatment, these substrates were used to investigate if GH5D, GH5E, GH5H and GH45 could operate in synergy. Results revealed that out of 12 possible core enzyme sets constructed, only two (referred to as CES-E and CES-H) displayed higher activities on pretreated CC or SSB. Simultaneous synergy was generally the most effective mode of synergy during hydrolysis of alkaline pretreated SSB and CC samples by both CES-E and CES-H. Both core enzyme sets did not display synergy on oxidative pretreated substrates. These findings suggest that lime and NaOH are more effective pretreatments for CC and SSB substrates. We used PRotein Interactive MOdeling (PRIMO) software to demonstrate that GH5D protein structure is an (α/β)8 barrel with a tunnel-like active site. Enzymes with this type of protein structure are able to perform transglycosylation, a process in which GH5D produced methyl, ethyl and propyl cellobiosides. We concluded that the GH5D, GH5E, GH5H and GH45 enzymes possess novel biochemical properties and that they form synergy during the hydrolysis of complex substrates (SSB and CC). GH5D transglycosylation could be used to produce novel biodegradable chemicals with special properties (e.g. anti-microbial properties). In conclusion, our findings suggest that GH5D, GH5E, GH5H and GH45 can potentially be used to improve biorefinery processes.


2021 ◽  
Author(s):  
Hirak Saxena

The biological hydrolysis of glycosidic linkages in complex sugars is facilitated by glycoside hydrolases. These enzymes are ubiquitous across all domains of life, playing significant roles in important biological processes like the degradation of cellulosic biomass, viral pathogenesis, antibacterial defense, and normal cellular functions. The potential industrial applications of highly efficient glycoside hydrolases, as well as the fact that a number of lysosomal storage diseases have been attributed to deficiencies in these enzymes 43, 22, merits further study into their structure and activity. For this reason, a handful of novel glycoside hydrolases from Cellulomonas fimi, a Gram-positive Actinobacteria known for its ability to degrade cellulose 39, will be cloned, expressed and biochemically analyzed.


2021 ◽  
Author(s):  
Hirak Saxena

The biological hydrolysis of glycosidic linkages in complex sugars is facilitated by glycoside hydrolases. These enzymes are ubiquitous across all domains of life, playing significant roles in important biological processes like the degradation of cellulosic biomass, viral pathogenesis, antibacterial defense, and normal cellular functions. The potential industrial applications of highly efficient glycoside hydrolases, as well as the fact that a number of lysosomal storage diseases have been attributed to deficiencies in these enzymes 43, 22, merits further study into their structure and activity. For this reason, a handful of novel glycoside hydrolases from Cellulomonas fimi, a Gram-positive Actinobacteria known for its ability to degrade cellulose 39, will be cloned, expressed and biochemically analyzed.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 597 ◽  
Author(s):  
Changsuk Oh ◽  
T. Doohun Kim ◽  
Kyeong Kyu Kim

Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.


2015 ◽  
Vol 1 (7) ◽  
pp. e1500263 ◽  
Author(s):  
Akihiko Nakamura ◽  
Takuya Ishida ◽  
Katsuhiro Kusaka ◽  
Taro Yamada ◽  
Shinya Fushinobu ◽  
...  

Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the “Newton’s cradle”–like proton relay pathway of the catalytic cycle. Amide–imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenyu Zhang ◽  
Pengfu Liu ◽  
Weike Su ◽  
Huawei Zhang ◽  
Wenqian Xu ◽  
...  

AbstractTrans-4-hydroxy-l-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-l-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-l-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-l-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-l-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-l-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.


2004 ◽  
Vol 186 (15) ◽  
pp. 4885-4893 ◽  
Author(s):  
Takane Katayama ◽  
Akiko Sakuma ◽  
Takatoshi Kimura ◽  
Yutaka Makimura ◽  
Jun Hiratake ◽  
...  

ABSTRACT A genomic library of Bifidobacterium bifidum constructed in Escherichia coli was screened for the ability to hydrolyze the α-(1→2) linkage of 2′-fucosyllactose, and a gene encoding 1,2-α-l-fucosidase (AfcA) was isolated. The afcA gene was found to comprise 1,959 amino acid residues with a predicted molecular mass of 205 kDa and containing a signal peptide and a membrane anchor at the N and C termini, respectively. A domain responsible for fucosidase activity (the Fuc domain; amino acid residues 577 to 1474) was localized by deletion analysis and then purified as a hexahistidine-tagged protein. The recombinant Fuc domain specifically hydrolyzed the terminal α-(1→2)-fucosidic linkages of various oligosaccharides and a sugar chain of a glycoprotein. The stereochemical course of the hydrolysis of 2′-fucosyllactose was determined to be inversion by using 1H nuclear magnetic resonance. The primary structure of the Fuc domain exhibited no similarity to those of any glycoside hydrolases (GHs) but showed high similarity to those of several hypothetical proteins in a database. Thus, it was revealed that the AfcA protein constitutes a novel inverting GH family (GH family 95).


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 227 ◽  
Author(s):  
Camila Favaro ◽  
Ilton Baraldi ◽  
Fernanda Casciatori ◽  
Cristiane Farinas

Soluble coffee offers the combined benefits of high added value and practicality for its consumers. The hydrolysis of coffee polysaccharides by the biochemical route, using enzymes, is an eco-friendly and sustainable way to improve the quality of this product, while contributing to the implementation of industrial processes that have lower energy requirements and can reduce environmental impacts. This work describes the production of hydrolytic enzymes by solid-state fermentation (SSF), cultivating filamentous fungi on waste from the coffee industry, followed by their application in the hydrolysis of waste coffee polysaccharides from soluble coffee processing. Different substrate compositions were studied, an ideal microorganism was selected, and the fermentation conditions were optimized. Cultivations for enzymes production were carried out in flasks and in a packed-bed bioreactor. Higher enzyme yield was achieved in the bioreactor, due to better aeration of the substrate. The best β-mannanase production results were found for a substrate composed of a mixture of coffee waste and wheat bran (1:1 w/w), using Aspergillus niger F12. The enzymatic extract proved to be very stable for 24 h, at 50 °C, and was able to hydrolyze a considerable amount of the carbohydrates in the coffee. The addition of a commercial cellulase cocktail to the crude extract increased the hydrolysis yield by 56%. The production of β-mannanase by SSF and its application in the hydrolysis of coffee polysaccharides showed promise for improving soluble coffee processing, offering an attractive way to assist in closing the loops in the coffee industry and creating a circular economy.


Sign in / Sign up

Export Citation Format

Share Document