scholarly journals Poly(chitosan-ester-ether-urethane) Hydrogels as Highly Controlled Genistein Release Systems

2021 ◽  
Vol 22 (7) ◽  
pp. 3339
Author(s):  
Martyna Zagórska-Dziok ◽  
Patrycja Kleczkowska ◽  
Ewa Olędzka ◽  
Ramona Figat ◽  
Marcin Sobczak

Polymeric hydrogels play an increasingly important role in medicine, pharmacy and cosmetology. They appear to be one of the most promising groups of biomaterials due to their favorable physicochemical properties and biocompatibility. The objective of the presented study was to synthesize new poly(chitosan-ester-ether-urethane) hydrogels and to study the kinetic release of genistein (GEN) from these biomaterials. In view of the above, six non-toxic hydrogels were synthesized via the Ring-Opening Polymerization (ROP) and polyaddition processes. The poly(ester-ether) components of the hydrogels have been produced in the presence of the enzyme as a biocatalyst. In some cases, the in vitro release rate of GEN from the obtained hydrogels was characterized by near-zero-order kinetics, without "burst release" and with non-Fickian transport. It is important to note that developed hydrogels have been shown to possess the desired safety profile due to lack of cytotoxicity to skin cells (keratinocytes and fibroblasts). Taking into account the non-toxicity of hydrogels and the relatively highly controlled release profile of GEN, these results may provide fresh insight into polymeric hydrogels as an effective dermatological and/or cosmetological tool.

2021 ◽  
Vol 21 (11) ◽  
pp. 5723-5735
Author(s):  
Sofiya Shaikh ◽  
Hemil Patel ◽  
Debes Ray ◽  
Vinod K. Aswal ◽  
Rakesh K. Sharma

Recently the applications of Poloxamers in drug development is promising as it facilitated the drug molecule for delivering to the correct place, at the correct time and in the correct amount. Poloxamers can form nanomicelles to encapsulate hydrophobic drugs in order to increase solubility, stability and facilitate delivery at target. In this context, the solubilization of anticonvulsant lamotrigine (LMN) drug in a chain of Poloxamers containing different polyethylene oxide and polypropylene oxide noieties were examined. The results showed better solubilization of LMN in Poloxamers contain low CMTs while poor with Poloxamers having high CMTs. Systematic investigation of two mixed Poloxamer nanomicelles (P407:P403 and P407:P105) for LMN bioavailability at body temperature (37 °C) were investigated. The solubility of LMN was enhanced in mixed P407:P403 nanomicelles with the amount of P403 and reduced in mixed P407:P105 nanomicelles with the amount of P105. LMN encapsulated mixed Poloxamer nanomicelles were found spherical in shape with ~25 nm Dh sizes. The In-Vitro release profiles of mixed Poloxamer nanomicelles demonstrated the biphasic model with initial burst release and then slowly release of LMN. Better biocompatibility of LMN in the mixed P407:P403 nanomicelles was confirmed with stability data. The results of this work were proven the mixed P407:P403 nanomicelles as efficient nanocarriers for LMN.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ye Yuan ◽  
Jia-Xing Song ◽  
Mei-Na Zhang ◽  
Bao-Shan Yuan

Abstract Osteosarcoma is a malignant condition affecting adolescents and children more than adults. Nanobiomedicine has opened up several avenues which have increased therapeutic efficiencies than the conventional treatment for the same. In the current study, a novel organic nanoparticle was devised conjugated with bisphosphonate zoledronic acid which has an affinity for bone tissues. Moreover, the nanoparticle was loaded with multiple anti-cancer drugs like gemcitabine and epirubicin. The nanoparticles were characterized by microscopic analysis, entrapment and loading efficiencies, bone affinity studies, in-vitro release studies, cytotoxicity studies and finally in-vivo tumor regression studies. Bone affinity studies depicted a high affinity of zoledronic acid towards bone powder. The nanoparticle exhibited a nanosize dimension, high entrapment and loading efficiencies with uniform symmetry devoid of agglomeration. The in-vitro release experiments showed a measured release of drugs over a longer time without any hint of burst release. However, the release was comparatively for a longer duration in acidic pH and normal physiological pH which may be excellent for therapeutic efficiency. The cytotoxicity studies revealed enhanced cytotoxic effect for MG-63 cell lines in comparison of free drug or single drug combinations. Nonetheless, they proved to be cytocompatible with primary bone cells. Additionally, cellular uptake of nanoparticle was appreciably improved. Significant tumor (250%) regression was seen upon treatment with multiple drug loaded zoledronic acid conjugated nanoparticle, along with epigenetic changes affecting microRNA expressions. The increased cytotoxicity and increased cellular uptake may be of greater advantage in systemic osteosarcoma therapy. Combining all results, our study demonstrated substantial potential towards management of osteosarcoma.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


2019 ◽  
Vol 16 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Fahad Pervaiz ◽  
Mahmood Ahmad ◽  
Lihong Li ◽  
Ghulam Murtaza

Purpose: The purpose of this study was to develop a new PLGA based microsphere formulation aimed to release the olanzapine for the period of one month which will result in increased compliance. Methods: Microspheres loaded with olanzapine were prepared using oil in water emulsion and solvent evaporation technique. The microspheres were characterized by surface morphology, shape, size, bulk density, encapsulation efficiency, and Fourier transform infrared spectrometry. In vitro release studies were performed in phosphate buffer at 37°C and in vivo studies were conducted on male Sprague- Dawley rats. Results: The morphological results indicated that microspheres produced were having a smooth surface, spherical shape and the size in the range from 9.71 to 19.90 μm mean diameter. Encapsulation efficiency of olanzapine loaded microspheres was in the range of 78.53 to 96.12% and was affected by changing the ratio of lactic to glycolic acid in copolymer PLGA. The properties of PLGA and other formulation parameters had a significant impact on in vitro and in vivo release of drug from microspheres. In vitro release kinetics revealed that release of drug from microspheres is by both non-Fickian diffusion and erosion of PLGA polymer. In vivo data indicated an initial burst release and then sustained release depending on properties of PLGA, microsphere size, and bulk density. Conclusion: This study indicates that microsphere formulations developed with PLGA (75:25) and PLGA (85:15) have provided a sufficient steady release of drug for at least 30 days and can be potential candidates for 30-day depot injection drug delivery of olanzapine.


Author(s):  
Naga sai divya K ◽  
T Malyadri ◽  
Ch.saibabu

The purpose of the present study was to develop and optimize the emulgel system for Luliconazole using different types of gelling agents: HPMCK15M, Carbopol 940, and Xanthan Gum. The prepared emulgels were evaluated in terms of appearance, pH, spreadability, viscosity, drug content, and in-vitro drug release. In-vitro release study demonstrated diffusion-controlled release of Luliconazole from formulation up to 12 hours. The drug release profile exhibited zero-order kinetics. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and higher drug release. In the case of all evaluation parameters, carbopol based formulation showed better properties so, as a general conclusion, it was suggested that the Luliconazole emulgel formulation prepared with carbopol (F6) was the formula of choice.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1021 ◽  
Author(s):  
Taepin Junmahasathien ◽  
Pattaraporn Panraksa ◽  
Paytaai Protiarn ◽  
Doosadee Hormdee ◽  
Rajda Noisombut ◽  
...  

The objective of this study was to develop the metronidazole loaded high and low methoxyl pectin films (HM-G-MZ and LM-G-MZ) for the treatment of periodontal disease. The films were prepared by pectin 3% w/v, glycerin 40% w/v, and metronidazole 5% w/v. The developed films were characterized by scanning electron microscope and evaluated for thickness, weight variation, and elasticity. The developed films showing optimal mechanical properties were selected to evaluate radial swelling properties, in vitro release of metronidazole and the antimicrobial activity against Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by the disc diffusion method. The results demonstrated that LM-MZ and HM-G-MZ films were colorless and yellowish color, respectively, with the film thickness around 0.36–0.38 mm. Furthermore, both films exhibited good elasticity with low puncture strength (1.63 ± 0.37 and 0.84 ± 0.03 N/mm2, respectively) and also showed slight increase in radial swelling, so that they could be easily inserted and fitted into the periodontal pocket during a clinical use. However, HM-G-MZ showed a decrease in radial swelling after 1 h due to the film erosion. The in vitro release study of LM-G-MZ showed a burst release that was initially followed by a slow release rate profile, capable to maintain the therapeutic level in periodontal pocket for seven days, whereas HM-G-MZ showed an immediate release profile. The cumulative percentage of metronidazole release from HM-G-MZ was less than LM-G-MZ during the first 5 min as metronidazole was in a crystalline form inside HM-G-MZ film. For antimicrobial activity test, both films showed the inhibitory effect against P. gingivalis and A. actinomycetemcomitans, and there was no difference in the inhibition zone between LM-G-MZ and HM-G-MZ. The present study showed, for the first time, that low methoxyl pectin film containing glycerin and metronidazole could be potentially considered as a promising clinical tool for the drug delivery via intra-periodontal pocket to target an oral disease that is associated with polymicrobial infection.


2018 ◽  
Vol 10 (2) ◽  
pp. 91 ◽  
Author(s):  
Pattravee Niamprem ◽  
S. P. Srinivas ◽  
Waree Tiyaboonchai

Objective: To develop and characterize indomethacin loaded-nanostructured lipid carriers (IND-NLCs) for topical ophthalmic delivery with different particle sizes and polymer coating to improve the mucoadhesive property on the ocular surface.Methods: Nanostructured lipid carriers (NLCs) with different solid lipids and surfactants were prepared by the high-pressure homogenization technique. The optimized IND-NLCs was coated with polyethylene glycol 400 (PEG). The physicochemical properties and entrapment efficacy (EE) were examined. In vitro release studies were investigated using the shake-flask method. Ex vivo mucoadhesive studies were assessed by the wash-off test. In addition, the cytotoxicity was assessed by the short time exposure test.Results: IND-NLCs of ~300 and ~40 nm in diameter were successfully produced with a zeta potential of -30 mV and EE of 60–70 %. IND-NLCs prepared with Tween 80 as surfactant could be sterilized by autoclaving. The PEG coating of IND-NLCs did not affect either the particle size or EE. In vitro release showed a prolonged release for 360 min with a burst release of 50-60% occurring within 5 min. The smaller-sized IND-NLCs showed slightly faster release rates and better mucoadhesion to cornea compared to the larger IND-NLCs. PEG-coated IND-NLCs showed the highest mucoadhesion. In addition, IND-NLCs showed less cytotoxicity compared to IND alone. Conclusion: The small and PEG-coated NLCs represents a potentially useful carrier for safe delivery of indomethacin to the ocular surface with increased residence time.


2019 ◽  
Author(s):  
Anil Shumroni ◽  
David Gupta

AbstractThis report demonstrates a novel strategy to prepare fluorouracil polylactide glycolide-polyethylene glycol monomethyl ether (PLGA-mPEG) nanoparticles and study their in vitro release characteristics. Fluorouracil PLGA-mPEG nanoparticles were prepared by nanoprecipitation method. The encapsulation efficiency was determined by high performance liquid chromatography. Based on the single factor experiment, the prescription and preparation process were optimized by orthogonal experiments. The in vitro release characteristics of nanoparticles were studied by dynamic membrane dialysis. Results The prepared nanoparticles were relatively uniform spheroidal particles with an average particle size of about 124. 3 nm, a Zeta potential of - 20. 6 mV, and an average encapsulation efficiency of (44.72 ± 0.38%). In vitro drug release experiments showed that the particle burst release was less than 30% at 2 h, and the drug was slowly released within 48 h after burst release.


2018 ◽  
Vol 16 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Vieri Piazzini ◽  
Lorenzo Cinci ◽  
Mario D'Ambrosio ◽  
Cristina Luceri ◽  
Anna Rita Bilia ◽  
...  

Background: Silybin (Sb) is the major flavolignan of the extract of Silybum marianum. It is used for the treatment of various acute and chronic liver toxicities, inflammation, fibrosis and oxidative stress. Many studies indicate that Sb is also active against different carcinomas and it has been very recently proposed to be beneficial in type 2 diabetes patients. However, Sb is a low water soluble and low permeable compound. Objective: In this study, Solid Lipid Nanoparticles (SLNs) were proposed to enhance the solubility and the intestinal absorption of Sb. </P><P> Methods: SLNs were made of stearic acid and Brij 78 and subsequently coated with chitosan. Formulations were physically and chemically characterized. Stability studies were also assessed. Sb in vitro release was evaluated in different pH media. In vitro permeability test with artificial membranes and Caco-2 cells were performed. Cellular uptake and mucoadhesion studies were conducted. Results: Both nanoparticles were found to be stable. In vitro release indicated that SLNs may prevent burst release and gastric degradation of Sb. Higher extent of Sb permeation was observed for both nanoparticles in PAMPA and Caco-2 cell monolayer models. The results of the cellular uptake study suggested the involvement of active endocytic processes. Chitosan significantly improves mucoadhesion properties of nanoparticles. </P><P> Conclusions: Together with the excellent stability, strong mucoadhesive property, and slow release, chitosan coated SLNs demonstrated promising potential to enhance absorption of hydrophobic Sb after oral administration.


Sign in / Sign up

Export Citation Format

Share Document