scholarly journals Novel Characterization of Constipation Phenotypes in ICR Mice Orally Administrated with Polystyrene Microplastics

2021 ◽  
Vol 22 (11) ◽  
pp. 5845
Author(s):  
Yun Ju Choi ◽  
Jun Woo Park ◽  
Ji Eun Kim ◽  
Su Jin Lee ◽  
Jeong Eun Gong ◽  
...  

Indirect evidence has determined the possibility that microplastics (MP) induce constipation, although direct scientific proof for constipation induction in animals remains unclear. To investigate whether oral administration of polystyrene (PS)-MP causes constipation, an alteration in the constipation parameters and mechanisms was analyzed in ICR mice, treated with 0.5 μm PS-MP for 2 weeks. Significant alterations in water consumption, stool weight, stool water contents, and stool morphology were detected in MP treated ICR mice, as compared to Vehicle treated group. Also, the gastrointestinal (GI) motility and intestinal length were decreased, while the histopathological structure and cytological structure of the mid colon were remarkably altered in treated mice. Mice exposed to MP also showed a significant decrease in the GI hormone concentration, muscarinic acetylcholine receptors (mAChRs) expression, and their downstream signaling pathway. Subsequent to MP treatment, concentrations of chloride ion and expressions of its channel (CFTR and CIC-2) were decreased, whereas expressions of aquaporin (AQP)3 and 8 for water transportation were downregulated by activation of the mitogen-activated protein kinase (MAPK)/nuclear factor (NF)-κB signaling pathway. These results are the first to suggest that oral administration of PS-MP induces chronic constipation through the dysregulation of GI motility, mucin secretion, and chloride ion and water transportation in the mid colon.

2021 ◽  
Author(s):  
Yun Ju Choi ◽  
Jun Woo Park ◽  
Ji Eun Kim ◽  
Su Jin Lee ◽  
Jeong Eun Gong ◽  
...  

Abstract Objective: Indirect evidence has determined the possibility that microplastics (MP) induce constipation, although direct scientific proof for constipation induction in animals remains unclear. Thus, this study is aimed to investigate whether oral administration of polystyrene MP causes constipation.Methods: An alteration in the constipation parameters and their molecular mechanisms was analyzed in ICR mice treated with 0.5 μm polystyrene (PS)-MP for 2 weeks. Results: Significant alterations in water consumption, stool weight, stool water contents, and stool morphology were detected in MP treated ICR mice, as compared to Vehicle treated group. Also, the gastrointestinal (GI) motility and intestinal length were decreased, while the histopathological structure and cytological structure of the transverse colon were remarkably altered in treated mice. Mice exposed to MP also showed a significant decrease in the GI hormone concentration, muscarinic acetylcholine receptors (mAChRs) expression and their downstream signaling pathway, as well as mucin secretion and transcription of the MUC1, MUC2 and Klf4 genes. Subsequent to MP treatment, concentrations of chloride ion and expressions of its channel (CFTR and CIC-2) were decreased, whereas expressions of AQP3 and 8 for water transportation were downregulated by activation of the MAPK/NF-kB signaling pathway. These regulation on water and chloride transportation were verified in intestinal epithelioid cell line (IEC18) after MP treatment. Conclusion: These results are the first to suggest that oral administration of PS-MP induces chronic constipation through the dysregulation of GI motility, mucin secretion, and chloride ion and water transportation in the transverse colon.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2268
Author(s):  
Dina Medina-Vera ◽  
Juan Antonio Navarro ◽  
Rubén Tovar ◽  
Cristina Rosell-Valle ◽  
Alfonso Gutiérrez-Adan ◽  
...  

D-Pinitol (DPIN) is a natural occurring inositol capable of activating the insulin pathway in peripheral tissues, whereas this has not been thoroughly studied in the central nervous system. The present study assessed the potential regulatory effects of DPIN on the hypothalamic insulin signaling pathway. To this end we investigated the Phosphatidylinositol-3-kinase (PI3K)/Protein Kinase B (Akt) signaling cascade in a rat model following oral administration of DPIN. The PI3K/Akt-associated proteins were quantified by Western blot in terms of phosphorylation and total expression. Results indicate that the acute administration of DPIN induced time-dependent phosphorylation of PI3K/Akt and its related substrates within the hypothalamus, indicating an activation of the insulin signaling pathway. This profile is consistent with DPIN as an insulin sensitizer since we also found a decrease in the circulating concentration of this hormone. Overall, the present study shows the pharmacological action of DPIN in the hypothalamus through the PI3K/Akt pathway when giving in fasted animals. These findings suggest that DPIN might be a candidate to treat brain insulin-resistance associated disorders by activating insulin response beyond the insulin receptor.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Li Li ◽  
Huabo Jiang ◽  
Xuecong Wei ◽  
Dandan Geng ◽  
Ming He ◽  
...  

Vascular endothelial growth factor receptor-2 (VEGFR-2) regulates the mitogen-activated protein kinase (MAPK) signaling pathway and plays an important role in angiogenesis. Bu Shen Zhu Yun decoction (BSZYD) can improve endometrial receptivity and embryo implantation rates in patients undergoing in vitro fertilization. However, whether BSZYD improves endometrial receptivity via angiogenesis remains unclear. Here, we investigated the effects of BSZYD on the proliferation, migration, and angiogenesis of human endometrial microvascular endothelial cells (HEMECs) and found that BSZYD upregulated the expression of cyclin D1, matrix metalloproteinase 9 (MMP9), and proliferating cell nuclear antigen (PCNA) in HEMECs. Cell Counting Kit 8 assay, scratch-wound assay, and Tube Formation Assay results showed that BSZYD promoted the proliferation, migration, and angiogenesis of HEMECs. Western blot analysis results revealed the activation of the MAPK signaling pathway by BSZYD through the upregulation of VEGF and VEGFR-2 expression. Together, these findings highlight the novel mechanism underlying BSZYD-mediated improvement in endometrial receptivity through the MAPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document