scholarly journals Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI

2021 ◽  
Vol 22 (11) ◽  
pp. 6038
Author(s):  
Anastasia Nazarova ◽  
Arthur Khannanov ◽  
Artur Boldyrev ◽  
Luidmila Yakimova ◽  
Ivan Stoikov

In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host–guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π–π-stacking, cation–π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.

2003 ◽  
Vol 68 (9) ◽  
pp. 1647-1662 ◽  
Author(s):  
Valeria Amendola ◽  
Massimo Boiocchi ◽  
Yuri Diaz Fernandez ◽  
Carlo Mangano ◽  
Piersandro Pallavicini

The bis-bidentate ligand R,S-1,2-diphenyl-N,N'-bis(2-quinolinemethylidene)ethane-1,2-diamine (ligand 4), containing two (iminomethyl)quinoline moieties separated by a cis-1,2-diphenylethylene spacer, forms stable complexes with both CuI and CuII. With CuII, the monomeric 1:1 complex [CuII(4)]2+ is obtained both in CH3CN and CH2Cl2. With CuI and overall 1:1 metal/ligand molar ratio, an equilibrium mixture is obtained in CH3CN, consisting of [CuI(4)2]+, [CuI2(4)2]2+ and [CuI2(4)(CH3CN)4]2+. The preponderant species is the two-metal one-ligand "open" complex [CuI2(4)(CH3CN)4]2+, in which each Cu+ cation is coordinated in a tetrahedral fashion by one (iminomethyl)quinoline unit and by two CH3CN molecules. Precipitation from the equilibrium mixture yields only crystals of [CuI2(4)(CH3CN)4](ClO4)2·2CH3CN, whose crystal and molecular structures have been determined. On the other hand, in the poorly coordinating CH2Cl2 solvent, only the dimeric helical [CuI2(4)2]2+ complex is obtained, when the overall metal/ligand 1:1 molar ratio is chosen. Addition of large quantities of acetonitrile to solutions of [CuI2(4)2]2+ in dichlorometane results in the formation of [CuI2(4)(CH3CN)4]2+, i.e. in the solvent-driven disassembling of the CuI helicate. While electrochemistry in CH3CN is poorly defined due to the presence of more than one CuI species, cyclic voltammetry experiments carried out in CH2Cl2 revealed a well defined behavior, with irreversible oxidation of [CuI2(4)2]2+ and irreversible reduction of [CuII(4)]2+ taking place at separate potentials (∆E ≈ 700 mV). Irreversibility and separation of the redox events are due to the self-assembling and disassembling processes following the reduction and oxidation, respectively.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Federica Palombarini ◽  
Silvia Masciarelli ◽  
Alessio Incocciati ◽  
Francesca Liccardo ◽  
Elisa Di Fabio ◽  
...  

Abstract Background In recent years, the use of ferritins as nano-vehicles for drug delivery is taking center stage. Compared to other similar nanocarriers, Archaeoglobus fulgidus ferritin is particularly interesting due to its unique ability to assemble-disassemble under very mild conditions. Recently this ferritin was engineered to get a chimeric protein targeted to human CD71 receptor, typically overexpressed in cancer cells. Results Archaeoglobus fulgidus chimeric ferritin was used to generate a self-assembling hybrid nanoparticle hosting an aminic dendrimer together with a small nucleic acid. The positively charged dendrimer can indeed establish electrostatic interactions with the chimeric ferritin internal surface, allowing the formation of a protein-dendrimer binary system. The 4 large triangular openings on the ferritin shell represent a gate for negatively charged small RNAs, which access the internal cavity attracted by the dense positive charge of the dendrimer. This ternary protein-dendrimer-RNA system is efficiently uptaken by acute myeloid leukemia cells, typically difficult to transfect. As a proof of concept, we used a microRNA whose cellular delivery and induced phenotypic effects can be easily detected. In this article we have demonstrated that this hybrid nanoparticle successfully delivers a pre-miRNA to leukemia cells. Once delivered, the nucleic acid is released into the cytosol and processed to mature miRNA, thus eliciting phenotypic effects and morphological changes similar to the initial stages of granulocyte differentiation. Conclusion The results here presented pave the way for the design of a new family of protein-based transfecting agents that can specifically target a wide range of diseased cells. Graphic abstract


Author(s):  
Tendai O. Dembaremba ◽  
Adeniyi S. Ogunlaja ◽  
Zenixole R. Tshentu

Desulfurization of fuel oils is an essential process employed in petroleum refineries to reduce the sulfur content to levels mandated for environmental protection. Hydrodesulfurization (HDS), which is currently being employed, is limited in treating refractory organosulfur compounds and only reduces the sulfur content in fuels to a range of 200-500 ppmS. In this chapter, several scientific and technological advances reported in the literature for the desulfurization of fuels are reviewed and discussed. Amongst these techniques, oxidative desulfurization (ODS) and adsorptive desulfurization (ADS) are proposed as additional steps to complement HDS in meeting the mandated ultra-low sulfur levels (10 ppmS). In the ODS technique, refractory organosulfur compounds are oxidized to organosulfones, followed by solvent extraction or adsorption of the organosulfones. The chemistry involved in the development and fabrication of sulfur/sulfone responsive adsorbents is also discussed. The use of molecular imprinted polymers (MIPs) and coordination polymers (CPs) for the selective adsorption of organosulfone compounds (in ODS) and/or organosulfur (in ADS) offers various properties such as imprinting effect, hydrogen bonding, π-π interactions, van der Waals forces, π-complexation, and electrostatic interactions. CPs, in particular metal organic frameworks (MOFs), have been reported to possess suitable features to overcome most of these challenges associated with adsorptive ultra-deep desulfurization when design strategies to achieve good selectivity are strictly followed. Matching the sizes of the cavities to the critical dimensions of the sulfur containing compounds (SCCs), using suitable metal centres which allow for coordinative interaction with the SCCs and using linkers with suitable functionality as to enhance specific interaction (dispersion forces) with the SCCs were considered to be pivotal features to prioritize. The prospects for the use of MIPs and CPs for future industrial applications in desulfurization are envisaged.


2016 ◽  
Vol 191 ◽  
pp. 89-104 ◽  
Author(s):  
Alina Kirillova ◽  
Georgi Stoychev ◽  
Alla Synytska

The exploitation of colloidal building blocks with morphological and functional anisotropy facilitates the generation of complex structures with unique properties, which are not exhibited by isotropic particle assemblies. Herein, we demonstrate an easy and scalable bottom-up approach for the programmed assembly of hairy oppositely charged homogeneously decorated and Janus particles based on electrostatic interactions mediated by polyelectrolytes grafted onto their surface. Two different assembly routes are proposed depending on the target structures: raspberry-like/half-raspberry-like or dumbbell-like micro-clusters. Ultimately, stable symmetric and asymmetric micro-structures could be obtained in a well-controlled manner for the homogeneous–homogeneous and homogeneous–Janus particle assemblies, respectively. The spatially separated functionalities of the asymmetric Janus particle-based micro-clusters allow their further assembly into complex hierarchical constructs, which may potentially lead to the design of materials with tailored plasmonics and optical properties.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1894 ◽  
Author(s):  
Patrycja Makoś ◽  
Edyta Słupek ◽  
Aleksandra Małachowska

The paper presents the preparation of new adsorbents based on silica gel (SiO2) impregnated with deep eutectic solvents (DESs) to increase benzene, toluene, ethylbenzene, and p-xylene (BTEX) adsorption efficiency from gas streams. The DESs were synthesized by means of choline chloride, tetrapropylammonium bromide, levulinic acid, lactic acid, and phenol. The physico-chemical properties of new sorbent materials, including surface morphology and structures, as well as porosity, were studied by means of thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller analysis. The effect of DESs type, flow rate, and initial concentration of BTEX were also investigated followed by regeneration and reusability of adsorbents. The results indicate that SiO2 impregnated with tetrapropylammonium bromide and lactic acid in a 1:2 molar ratio have great potential for the removal of BTEX from gas streams. Its adsorption capacity was higher than the pure SiO2 and other developed SiO2-DES adsorbents. This result can be explained by the specific interaction between DESs and BTEX, i.e., hydrogen bonds interaction.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1084 ◽  
Author(s):  
Shaoming Jin ◽  
Zhongyao Du ◽  
Pengjie Wang ◽  
Huiyuan Guo ◽  
Hao Zhang ◽  
...  

Folic acid has been widely introduced into nano-drug delivery systems to give nanoparticle-targeted characteristics. However, the poor water solubility of folic acid may hinder the exploitation of its ability to load antineoplastic drugs. In the present study, we designed a new folate derivative (FA-2-DG) synthesized from folic acid and 2-Deoxyglucose (2-DG). The aim of this study was to evaluate the self-assembly characteristics of FA-2-DG, and its ability of loading cisplatin. The critical micelle concentration was 7.94 × 10−6 mol L−1. Fourier transform infrared spectroscopy indicated that hydrogen bonding interaction is a main driving force for the self–assembly of FA-2-DG. The particle was stable in pure water or 0.5% bovine serum albumin dispersions. By forming a coordination bond, the particles assembled from FA-2-DG can load cisplatin. The loading efficiency was maximal when the molar ratio of FA-2-DG to cisplatin was 2:1.


2012 ◽  
Vol 116 (34) ◽  
pp. 10330-10341 ◽  
Author(s):  
Li-Sheng Hao ◽  
Yuan-Xiang Gui ◽  
Yan-Mei Chen ◽  
Shao-Qing He ◽  
Yan-Qing Nan ◽  
...  

1984 ◽  
Vol 62 (4) ◽  
pp. 350-355
Author(s):  
James G. Foulks ◽  
Lillian Morishita

The local anaesthetic effect of cationic, anionic, and neutral alkyl amphipathic agents was similarly enhanced in an apparently nonspecific way by circumstances which modulate electrostatic interactions (acidity, modification of charged groups at the sarcolemmal surface by group-specific reagents, or changes in the calcium concentration), presumably as the result of secondary effects on the conformation of membrane proteins. However, the selective enhancement of the local anaesthetic effect of alkyl trimethylammonium compounds by perchlorate implies a more specific interaction which may influence the penetration of hydrophobic groups into the membrane interior.


Sign in / Sign up

Export Citation Format

Share Document