scholarly journals Genome-Wide Identification of Aquaporin Gene Family in Pitaya Reveals an HuNIP6;1 Involved in Flowering Process

2021 ◽  
Vol 22 (14) ◽  
pp. 7689
Author(s):  
Xiaoying Ye ◽  
Yongshun Gao ◽  
Canbin Chen ◽  
Fangfang Xie ◽  
Qingzhu Hua ◽  
...  

Aquaporins (AQPs) are essential membrane proteins involved in seed maturation and germination, stomata movement, photosynthesis, and regulation of plant flowering processes. Pitaya flowers are open at night and wither at daybreak, which shows an obvious circadian rhythm. In this study, a comprehensive genome-wide analysis of AQPs in Hylocereus undantus was conducted to screen key genes associated with flowering processes. A total of 33 HuAQP genes were identified from the H. undantus genome. The 33 HuAQPs were grouped into four subfamilies: 10 PIPs, 13 TIPs, 8 NIPs, and 2 SIPs, which were distributed on 9 out of 11 pitaya chromosomes (Chr) (except for Chr7 and Chr10). Results from expression profiles showed that HuNIP6;1 may be involved in pitaya’s floral opening. HuNIP6;1 was localized exclusively in the cell membrane. Overexpression of HuNIP6;1 in Arabidopsis thaliana significantly promoted early flowering through regulating negative flowering regulators of MJM30, COL9, and PRR5, suggesting that HuNIP6;1 plays key roles in regulating flowering time. The present study provides the first genome-wide analysis of the AQP gene family in pitaya and valuable information for utilization of HuAQPs.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


2017 ◽  
Vol 121 ◽  
pp. 118-127 ◽  
Author(s):  
Pattaranit Putpeerawit ◽  
Punchapat Sojikul ◽  
Siripong Thitamadee ◽  
Jarunya Narangajavana

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lili Yin ◽  
Meiling Zhang ◽  
Ruigang Wu ◽  
Xiaoliang Chen ◽  
Fei Liu ◽  
...  

Abstract Background Mung bean (Vigna radiata) is a warm-season legume crop and belongs to the papilionoid subfamily of the Fabaceae family. China is the leading producer of mung bean in the world. Mung bean has significant economic and health benefits and is a promising species with broad adaptation ability and high tolerance to environmental stresses. OSCA (hyperosmolality-gated calcium-permeable channel) gene family members play an important role in the modulation of hypertonic stress, such as drought and salinity. However, genome-wide analysis of the OSCA gene family has not been conducted in mung bean. Results We identified a total of 13 OSCA genes in the mung bean genome and named them according to their homology with AtOSCAs. All the OSCAs were phylogenetically split into four clades. Phylogenetic relationship and synteny analyses showed that the VrOSCAs in mung bean and soybean shared a relatively conserved evolutionary history. In addition, three duplicated VrOSCA gene pairs were identified, and the duplicated VrOSCAs gene pairs mainly underwent purifying selection pressure during evolution. Protein domain, motif and transmembrane analyses indicated that most of the VrOSCAs shared similar structures with their homologs. The expression pattern showed that except for VrOSCA2.1, the other 12 VrOSCAs were upregulated under treatment with ABA, PEG and NaCl, among which VrOSCA1.4 showed the largest increased expression levels. The duplicated genes VrOSCA2.1/VrOSCA2.2 showed divergent expression, which might have resulted in functionalization during subsequent evolution. The expression profiles under ABA, PEG and NaCl stress revealed a functional divergence of VrOSCA genes, which agreed with the analysis of cis-acting regulatory elements in the promoter regions of VrOSCA genes. Conclusions Collectively, the study provided a systematic analysis of the VrOSCA gene family in mung bean. Our results establish an important foundation for functional and evolutionary analysis of VrOSCAs and identify genes for further investigation of their ability to confer abiotic stress tolerance in mung bean.


2021 ◽  
Author(s):  
Jiahui Dong ◽  
Shance Niu ◽  
Juan Zhou ◽  
Ji Qian ◽  
Mengnan Zhao ◽  
...  

Abstract Background: Maintaining water balance in various adversities is a difficult and critical challenge for plants. Studies have shown that aquaporins located on cytomembrane play an important role in maintaining water homeostasis under various environmental stresses. Some studies have shown that aquaporins are involved in the tolerance mechanism of plant cells under cold stress, and the aquaporin gene family is closely related to the cold resistance of plants. Ligustrum × vicaryi Rehd. plays a significant role in urban landscaping with poor cold resistance at the seedling stage and early planting stage. Screening the target aquaporin genes of Ligustrum × vicaryi related to cold resistance during natural cold stress will provide a scientific theoretical basis for cold resistance breeding of Ligustrum × vicaryi.Results: In this study, the genome-wide identification of the aquaporin gene family was performed at four different overwintering periods in September, November, January and April, and finally 58 candidate Ligustrum × vicaryi aquaporin (LvAQP) genes were identified. The phylogenetic analysis revealed that four subfamilies of the LvAQP gene family: 32 PIPs, 11 TIPs, 11 NIPs, and 4 SIPs, among which there were more genes in the PIPs subfamily than that in other plants. The key LvAQP genes were found through analyzing aquaporin genes related to cold stress in other plants and LvAQP genes expression profiles. The up-regulated key LvAQP genes were Cluster-9981.114831, Cluster-9981.104986, and Cluster-9981.120365, and the down-regulated key LvAQP genes were Cluster-9981.112839, Cluster-9981.109034, Cluster-9981.89369, Cluster-9981.110451, Cluster-9981.107281, Cluster-9981.112777, Cluster-9981.112789, Cluster-9981.122691 and Cluster-9981.88037. These genes play a key role related to cold tolerance in the nature low temperature growth stage of Ligustrum × vicaryi. Conclusions: This study systematically identified the AQP gene family in Ligustrum × vicaryi and screened for 20 differential expression LvAQP genes related to cold stress, among which 11 genes belonged to PIPs subfamily. The results of this research will lay the foundation for further biological function verification of cold resistance-related aquaporin candidate genes in Ligustrum × vicaryi, especially PIPs subfamily, and provide theoretical basis and technical support for improving seedling quality and breeding.


DNA Research ◽  
2007 ◽  
Vol 14 (3) ◽  
pp. 103-116 ◽  
Author(s):  
Dominique Arnaud ◽  
Annabelle Déjardin ◽  
Jean-Charles Leplé ◽  
Marie-Claude Lesage-Descauses ◽  
Gilles Pilate

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Su ◽  
Ali Raza ◽  
Liu Zeng ◽  
Ang Gao ◽  
Yan Lv ◽  
...  

Abstract Background Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). Results In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. Conclusions This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


Sign in / Sign up

Export Citation Format

Share Document