scholarly journals Betulin Sulfonamides as Carbonic Anhydrase Inhibitors and Anticancer Agents in Breast Cancer Cells

2021 ◽  
Vol 22 (16) ◽  
pp. 8808
Author(s):  
Antje Güttler ◽  
Yvonne Eiselt ◽  
Anne Funtan ◽  
Andreas Thiel ◽  
Marina Petrenko ◽  
...  

Hypoxia-regulated protein carbonic anhydrase IX (CA IX) is up-regulated in different tumor entities and correlated with poor prognosis in breast cancer patients. Due to the radio- and chemotherapy resistance of solid hypoxic tumors, derivatives of betulinic acid (BA), a natural compound with anticancer properties, seem to be promising to benefit these cancer patients. We synthesized new betulin sulfonamides and determined their cytotoxicity in different breast cancer cell lines. Additionally, we investigated their effects on clonogenic survival, cell death, extracellular pH, HIF-1α, CA IX and CA XII protein levels and radiosensitivity. Our study revealed that cytotoxicity increased after treatment with the betulin sulfonamides compared to BA or their precursors, especially in triple-negative breast cancer (TNBC) cells. CA IX activity as well as CA IX and CA XII protein levels were reduced by the betulin sulfonamides. We observed elevated inhibitory efficiency against protumorigenic processes such as proliferation and clonogenic survival and the promotion of cell death and radiosensitivity compared to the precursor derivatives. In particular, TNBC cells showed benefit from the addition of sulfonamides onto BA and revealed that betulin sulfonamides are promising compounds to treat more aggressive breast cancers, or are at the same level against less aggressive breast cancer cells.

2021 ◽  
Vol 22 (8) ◽  
pp. 4153
Author(s):  
Kutlwano R. Xulu ◽  
Tanya N. Augustine

Thromboembolic complications are a leading cause of morbidity and mortality in cancer patients. Cancer patients often present with an increased risk for thrombosis including hypercoagulation, so the application of antiplatelet strategies to oncology warrants further investigation. This study investigated the effects of anastrozole and antiplatelet therapy (aspirin/clopidogrel cocktail or atopaxar) treatment on the tumour responses of luminal phenotype breast cancer cells and induced hypercoagulation. Ethical clearance was obtained (M150263). Blood was co-cultured with breast cancer cell lines (MCF7 and T47D) pre-treated with anastrozole and/or antiplatelet drugs for 24 h. Hypercoagulation was indicated by thrombin production and platelet activation (morphological and molecular). Gene expression associated with the epithelial-to-mesenchymal transition (EMT) was assessed in breast cancer cells, and secreted cytokines associated with tumour progression were evaluated. Data were analysed with the PAST3 software. Our findings showed that antiplatelet therapies (aspirin/clopidogrel cocktail and atopaxar) combined with anastrozole failed to prevent hypercoagulation and induced evidence of a partial EMT. Differences in tumour responses that modulate tumour aggression were noted between breast cancer cell lines, and this may be an important consideration in the clinical management of subphenotypes of luminal phenotype breast cancer. Further investigation is needed before this treatment modality (combined hormone and antiplatelet therapy) can be considered for managing tumour associated-thromboembolic disorder.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiraporn Kantapan ◽  
Siwaphon Paksee ◽  
Aphidet Duangya ◽  
Padchanee Sangthong ◽  
Sittiruk Roytrakul ◽  
...  

Abstract Background Radioresistance can pose a significant obstacle to the effective treatment of breast cancers. Epithelial–mesenchymal transition (EMT) is a critical step in the acquisition of stem cell traits and radioresistance. Here, we investigated whether Maprang seed extract (MPSE), a gallotannin-rich extract of seed from Bouea macrophylla Griffith, could inhibit the radiation-induced EMT process and enhance the radiosensitivity of breast cancer cells. Methods Breast cancer cells were pre-treated with MPSE before irradiation (IR), the radiosensitizing activity of MPSE was assessed using the colony formation assay. Radiation-induced EMT and stemness phenotype were identified using breast cancer stem cells (CSCs) marker (CD24−/low/CD44+) and mammosphere formation assay. Cell motility was determined via the wound healing assay and transwell migration. Radiation-induced cell death was assessed via the apoptosis assay and SA-β-galactosidase staining for cellular senescence. CSCs- and EMT-related genes were confirmed by real-time PCR (qPCR) and Western blotting. Results Pre-treated with MPSE before irradiation could reduce the clonogenic activity and enhance radiosensitivity of breast cancer cell lines with sensitization enhancement ratios (SERs) of 2.33 and 1.35 for MCF7 and MDA-MB231cells, respectively. Pretreatment of breast cancer cells followed by IR resulted in an increased level of DNA damage maker (γ-H2A histone family member) and enhanced radiation-induced cell death. Irradiation induced EMT process, which displayed a significant EMT phenotype with a down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker vimentin in comparison with untreated breast cancer cells. Notably, we observed that pretreatment with MPSE attenuated the radiation-induced EMT process and decrease some stemness-like properties characterized by mammosphere formation and the CSC marker. Furthermore, pretreatment with MPSE attenuated the radiation-induced activation of the pro-survival pathway by decrease the expression of phosphorylation of ERK and AKT and sensitized breast cancer cells to radiation. Conclusion MPSE enhanced the radiosensitivity of breast cancer cells by enhancing IR-induced DNA damage and cell death, and attenuating the IR-induced EMT process and stemness phenotype via targeting survival pathways PI3K/AKT and MAPK in irradiated breast cancer cells. Our findings describe a novel strategy for increasing the efficacy of radiotherapy for breast cancer patients using a safer and low-cost natural product, MPSE.


2020 ◽  
Vol 16 (3) ◽  
pp. 4485-4495
Author(s):  
Gulcan Bulut ◽  
Harika Atmaca ◽  
Burcak Karaca

Aim: AT-101 is a polyphenolic compound with potent anti-apoptotic effects in various cancers. In this study, the possible synergistic cytotoxic and apoptotic effect of trastuzumab/AT-101 combination was investigated in HER2-positive breast cancer cell lines. Materials & methods: SKBR-3, MDA-MB-453 and MCF-10A cell lines were treated with a trastuzumab/AT-101 combination. Synergistic cytotoxicity and apoptosis effects were shown and then PI3K and Akt protein levels were studied. Result: The trastuzumab/AT-101 combination induced synergistic cytotoxicity and apoptosis in both breast cancer cells but not in MCF-10A cells. Combination treatment induced cytotoxicity via inhibiting PI3K/AKT but not the MAPK/ERK pathway. Conclusion: The trastuzumab/AT-101 combination may be a good candidate for patients with trastuzumab-resistant Her2-positive breast cancer and inhibition of the PI3K/AKT pathway may be one of the underlying mechanisms.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3543-3543 ◽  
Author(s):  
Jason Brown ◽  
Palak Shah ◽  
Josh Vo ◽  
Lanbo Xiao ◽  
Yashar Niknafs ◽  
...  

3543 Background: Non-invasive testing in plasma using RNA biomarkers has been limited by exoribonuclease-mediated degradation of RNA. Circular RNA (circRNA) are covalently closed RNA structures that resist this degradation due to their circular structure. Therefore circRNA are more stable than their linear counterparts. CircRNA are formed by alternative backsplicing of the 3’ end of a downstream exon to the 5’ end of an upstream exon. Here, we propose a novel method for non-invasive identification of circRNA and demonstrate circularized forms of several lineage and cancer specific targets for estrogen receptor-positive breast cancer. Methods: Capture RNA sequencing on cancer tissue was previously performed to determine the relative expression of potential circRNA isoforms in breast cancer patients. These isoforms as well as those predicted by intron length were screened using a quantitative PCR-based assay on ER-positive breast cancer cells. RNA extracted from breast cancer cells are exposed to ribonuclease R to demonstrate stability of circRNA. CircRNA derived from targets with known universal expression are used as positive controls as well as for analysis on plasma. Results: We identify the circRNA isoforms with highest expression for five genes, including ESR1, that are differentially expressed in ER-positive breast cancer compared to other cancers and normal breast tissue. We determine that the circRNA corresponding to all five targets is specifically expressed in breast cancer cell lines with at least 1000-fold higher expression than in non-ER positive breast cancer cell lines. We demonstrate that the highest expressing circRNA isoforms are resistant to degradation by ribonuclease R, whereas corresponding linear mRNA is susceptible. We also demonstrate the presence and stability of positive control circRNA in plasma from patients without cancer. Conclusions: CircRNA are promising biomarkers for early non-invasive detection of cancer due to their stability in plasma. This assay reliably detects ER-positive breast cancer specific circRNA, and exoribonuclease resistance has been validated. Application of this diagnostic assay to plasma from breast cancer patients is underway.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yi-Han Chiu ◽  
Yi-Yen Lee ◽  
Kuo-Chin Huang ◽  
Cheng-Chi Liu ◽  
Chen-Si Lin

Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. The rising incidence rate and female mortality make it a significant public health concern in recent years. Dovitinib is a novel multitarget receptor tyrosine kinase inhibitor, which has been enrolled in several clinical trials in different cancers. However, its antitumor efficacy has not been well determined in breast cancers. Our results demonstrated that dovitinib showed significant antitumor activity in human breast cancer cell lines with dose- and time-dependent manners. Downregulation of phosphor-(p)-STAT3 and its subsequent effectors Mcl-1 and cyclin D1 was responsible for this drug effect. Ectopic expression of STAT3 rescued the breast cancer cells from cell apoptosis induced by dovitinib. Moreover, SHP-1 inhibitor reversed the downregulation of p-STAT3 induced by dovitinib, indicating that SHP-1 mediated the STAT3 inhibition effect of dovitinib. In addition to apoptosis, we found for the first time that dovitinib also activated autophagy to promote cell death in breast cancer cells. In conclusion, dovitinib induced both apoptosis and autophagy to block the growth of breast cancer cells by regulating the SHP-1-dependent STAT3 inhibition.


2019 ◽  
Vol 400 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Nadine Schmidt ◽  
Lisa Kowald ◽  
Sjoerd J.L. van Wijk ◽  
Simone Fulda

Abstract Smac mimetics (SMs) are considered promising cancer therapeutics. However, the mechanisms responsible for mediating cell death by SMs are still only partly understood. Therefore, in this study, we investigated signaling pathways upon treatment with the bivalent SM BV6 using two SM-sensitive breast cancer cell lines as models. Interestingly, genetic silencing of transforming growth factor (TGF)β activated kinase (TAK)1, an upstream activator of the nuclear factor-kappaB (NF-κB) subunit RelA (p65), increased BV6-induced cell death only in EVSA-T cells, although it reduced BV6-mediated upregulation of tumor necrosis factor (TNF)α in both EVSA-T and MDA-MB-231 cells. By comparison, genetic silencing of p65, a key component of canonical NF-κB signaling, blocked BV6-induced cell death in MDA-MB-231 but not in EVSA-T cells. Similarly, knockdown of NF-κB-inducing kinase (NIK) rescued MDA-MB-231 cells from BV6-induced cell death, while it failed to do so in EVSA-T cells. Consistently, silencing of p65 or NIK reduced BV6-stimulated upregulation of TNFα in MDA-MB-231 cells. In conclusion, TAK1, receptor-interacting kinase 1 (RIPK1) as well as canonical and non-canonical NF-κB signaling are differentially involved in SM-induced cell death in breast cancer cells. These findings contribute to a better understanding of SM-induced signaling pathways.


Endocrinology ◽  
2007 ◽  
Vol 148 (6) ◽  
pp. 2764-2777 ◽  
Author(s):  
Aiping Zheng ◽  
Anu Kallio ◽  
Pirkko Härkönen

Tamoxifen (Tam) is widely used in chemotherapy of breast cancer. It inhibits proliferation and induces apoptosis of breast cancer cells by estrogen receptor (ER)-dependent modulation of gene expression. In addition, recent reports have shown that Tam also has nongenomic effects. We previously reported induction of a rapid mitochondrial death program in breast cancer cells at pharmacological concentrations of Tam. Here we studied the upstream signaling events leading to mitochondrial disruption by Tam. We observed that 5 μm Tam rapidly induced sustained activation of ERK1/2 in ER-positive breast cancer cell lines (MCF-7 and T47D) and that PD98059 (inhibitor of ERK activation) was able to protect MCF-7 cells against Tam-induced death. These data suggest that activation of ERK has a primary role in the acute death response of the cells. In addition, inhibition of epidermal growth factor receptor (EGFR) opposed both Tam-induced ERK1/2 phosphorylation and cell death, which suggests that EGFR-associated mechanisms are involved in Tam-induced death. ERK1/2 phosphorylation was associated with a prolonged nuclear localization of ERK1/2 as determined by fluorescence microscopy with ERK2-green fluorescent protein construct. 17β-Estradiol was shown to exert a different kind of temporal pattern of ERK nuclear localization in comparison with Tam. Moreover, 17β-estradiol was found to oppose the rapid effects of Tam in MCF-7 and T47D cells but not in MDA-MB-231 cells, which implies a role for estrogen receptors in the protective effect of estrogen. The pure antiestrogen ICI182780 could not, however, prevent Tam-induced ERK1/2 phosphorylation, suggesting that the Tam-induced rapid cell death is primarily ER-independent or mediated by ICI182780 insensitive nongenomic mechanisms.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3085-3085
Author(s):  
Priya Vishnubhotla ◽  
Rebecca J Boohaker ◽  
Michael W Lee ◽  
Kathleen N Nemec ◽  
Amr Khaled ◽  
...  

3085 Background: Patients with metastatic breast cancer may be initially responsive to treatment, but a significant number develop refractory disease. There is a critical unmet need to develop effective therapeutic approaches given the unique metabolism of tumor cells. Methods: We examined the cytotoxic properties of a novel peptide, CT20p, derived from the C-terminus of Bax. For delivery to cells, the amphipathic nature of CT20p allowed it to be encapsulated in polymeric nanoparticles (NPs). NPs were made using aliphatic hyperbranched polyester (HBPE) that incorporated surface carboxylic groups and interior hydrophobic cavities for encapsulation of CT20p. To examine the cytotoxic potential and targeting capacity of CT20p-NP-HBPE, we treated MDA-MB-231 and MCF-10A breast cancer cell lines with the combination and measured changes in mitochondrial function, cell metabolism and induction of cell death. The ability of CT20p-NP-HBPE to cause tumor regression was examined by subcutaneously implanting MDA-MB-231 cells in nude mice. Results: Initial results showed that CT20p caused the release of calcein from mitochondrial-like lipid vesicles, without disrupting vesicle integrity, and, when expressed as a fusion protein in cells, localized to mitochondria. While the peptide alone had little effect upon intact cells, when encapsulated and delivered by nanoparticles, CT20p-HBPE-NPs proved an effective killer of breast cancer cells. CT20p-NP-HBPE initiated non-apoptotic cell death within 3 hours of treatment by targeting mitochondria and deregulating cellular metabolism. Nanoparticles alone or nanoparticles encapsulating a control peptide had minimal effects. The cytotoxicity of CT20p-NP-HPBE was most pronounced in breast cancer cells, sparing normal, epithelial cells. In implanted breast tumors, CT20p-NP-HBPE accumulated in tumors within 24 hours and reduced tumor burden by 50-80%. Conclusions: These results reveal the innovative features of CT20p that allow nanoparticle-mediated delivery to tumors and the potential application in combination therapies that target the unique metabolism of cancer cells.


Author(s):  
Celal Güven ◽  
Eylem Taskın ◽  
Onder Yumtutas ◽  
Leyla Turker Sener ◽  
Yusuf Ozay ◽  
...  

In the present study, we aimed to evaluate the anticancer activities of Cetraria islandica (C.islandica) extracts on MCF-7 breast cancer cell lines. Cell viability, protein levels, apoptotic cells number, F-actin distribution were measured. Cell viability of MCF-7 breast cancer cells was found to be reduced in a dose-dependent manner.EC50 values of C.islandica on MCF-7 cells were found to be 9.2047 E-5 g/ml (cell amount) by using intelligence system. Expressions of p53, caspase 3 and Bcl-2, were shown to be elevated after low doses of extract and diminished after high dose treatments. PPAR- protein level was decreased, although AMP-activated kinases-α1 (AMPK-α1) protein level was increasedin its extract groups. ERK1/2 protein level was also elevated in its extract groups. 125 mg/ml of extract treated cells show a low decrease in actin filament density. MCF-7 cells with C.islandica treatment for 24 h increased the apoptotic cell percentage, though the cells-treated with C.islandica for 48 was high necrotic cells percentage. Consequently, the C.islandica extract treatment causes to elevate ERK1/2 and AMPK-α1 protein levels, resulting in PPAR- and then triggers the apoptosis by modulation caspase-3 and P53 protein levels. Therefore, C.islandica might be a good candidate for anticancer tissue, especially soft tissue tumours.


2019 ◽  
Vol 41 (6) ◽  
pp. 804-816 ◽  
Author(s):  
Kai Wang ◽  
Yanbei Tu ◽  
Jian-Bo Wan ◽  
Meiwan Chen ◽  
Chengwei He

Abstract Autophagy is an evolutionarily conserved mechanism to protect the cells from unfavorable environmental conditions. Inhibition of autophagy has been contemplated as a novel strategy to enhance anticancer efficacy of existing chemotherapeutic agents. We previously reported that pulsatilla saponin D (PSD) was a potent autophagy inhibitor. However, its anticancer potential as adjuvant and underlying mechanisms are still unknown. In this study, we identified that PSD induced the formation of autophagosome in MCF-7 and MDA-MB-231 breast cancer cells. However, PSD alone and particularly co-treatment with camptothecin remarkably increased p62 protein levels, indicating that PSD strongly inhibited the autophagic cargo degradation. The mechanistic study indicated that PSD profoundly abolished the co-localization of EGFP-LC3 and lysosomal-specific probe LysoTracker Red, suggesting that the autophagosome–lysosome fusion was blocked by PSD, which is similar to the action of chloroquine. In addition, PSD significantly increased lysosomal pH and inhibited the activation of lysosomal cathepsins in both breast cancer cell lines. Furthermore, the accrued p62 resulted in accumulation of ubiquitinated proteins owing to the interaction with p62 and delivery to the malfunctioned autophagosome by PSD. Finally, we demonstrated that PSD synergistically enhanced the anticancer activity of camptothecin (CPT) in cultured breast cancer cells and in mouse xenograft tumor models. Our results indicated that PSD inhibited autophagic flux via blocking autophagosome–lysosome fusion and lysosomal acidification, which may confer a synergistic anti-breast cancer activity of PSD and CPT.


Sign in / Sign up

Export Citation Format

Share Document