scholarly journals C-Type Natriuretic Peptide Ameliorates Vascular Injury and Improves Neurological Outcomes in Neonatal Hypoxic-Ischemic Brain Injury in Mice

2021 ◽  
Vol 22 (16) ◽  
pp. 8966
Author(s):  
Guofang Shen ◽  
Shirley Hu ◽  
Zhen Zhao ◽  
Lubo Zhang ◽  
Qingyi Ma

C-type natriuretic peptide (CNP) is an important vascular regulator that is present in the brain. Our previous study demonstrated the innate neuroprotectant role of CNP in the neonatal brain after hypoxic-ischemic (HI) insults. In this study, we further explored the role of CNP in cerebrovascular pathology using both in vivo and in vitro models. In a neonatal mouse HI brain injury model, we found that intracerebroventricular administration of recombinant CNP dose-dependently reduces brain infarct size. CNP significantly decreases brain edema and immunoglobulin G (IgG) extravasation into the brain tissue, suggesting a vasculoprotective effect of CNP. Moreover, in primary brain microvascular endothelial cells (BMECs), CNP dose-dependently protects BMEC survival and monolayer integrity against oxygen-glucose deprivation (OGD). The vasculoprotective effect of CNP is mediated by its innate receptors NPR2 and NPR3, in that inhibition of either NPR2 or NPR3 counteracts the protective effect of CNP on IgG leakage after HI insult and BMEC survival under OGD. Of importance, CNP significantly ameliorates brain atrophy and improves neurological deficits after HI insults. Altogether, the present study indicates that recombinant CNP exerts vascular protection in neonatal HI brain injury via its innate receptors, suggesting a potential therapeutic target for the treatment of neonatal HI brain injury.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Zhou ◽  
Tao Tao ◽  
Guangjie Liu ◽  
Xuan Gao ◽  
Yongyue Gao ◽  
...  

AbstractNeuronal apoptosis has an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). TRAF3 was reported as a promising therapeutic target for stroke management, which covered several neuronal apoptosis signaling cascades. Hence, the present study is aimed to determine whether downregulation of TRAF3 could be neuroprotective in SAH-induced EBI. An in vivo SAH model in mice was established by endovascular perforation. Meanwhile, primary cultured cortical neurons of mice treated with oxygen hemoglobin were applied to mimic SAH in vitro. Our results demonstrated that TRAF3 protein expression increased and expressed in neurons both in vivo and in vitro SAH models. TRAF3 siRNA reversed neuronal loss and improved neurological deficits in SAH mice, and reduced cell death in SAH primary neurons. Mechanistically, we found that TRAF3 directly binds to TAK1 and potentiates phosphorylation and activation of TAK1, which further enhances the activation of NF-κB and MAPKs pathways to induce neuronal apoptosis. Importantly, TRAF3 expression was elevated following SAH in human brain tissue and was mainly expressed in neurons. Taken together, our study demonstrates that TRAF3 is an upstream regulator of MAPKs and NF-κB pathways in SAH-induced EBI via its interaction with and activation of TAK1. Furthermore, the TRAF3 may serve as a novel therapeutic target in SAH-induced EBI.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1334
Author(s):  
Ye Liu ◽  
Zahra Mohri ◽  
Wissal Alsheikh ◽  
Umber Cheema

The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


2018 ◽  
Vol 39 (12) ◽  
pp. 2406-2418 ◽  
Author(s):  
Su Jing Chan ◽  
Hui Zhao ◽  
Kazuhide Hayakawa ◽  
Chou Chai ◽  
Chong Teik Tan ◽  
...  

Modulator of apoptosis 1 (MOAP-1) is a Bax-associating protein highly enriched in the brain. In this study, we examined the role of MOAP-1 in promoting ischemic injuries following a stroke by investigating the consequences of MOAP-1 overexpression or deficiency in in vitro and in vivo models of ischemic stroke. MOAP-1 overexpressing SH-SY5Y cells showed significantly lower cell viability following oxygen and glucose deprivation (OGD) treatment when compared to control cells. Consistently, MOAP-1−/− primary cortical neurons were observed to be more resistant against OGD treatment than the MOAP-1+/+ primary neurons. In the mouse transient middle cerebral artery occlusion (tMCAO) model, ischemia triggered MOAP-1/Bax association, suggested activation of the MOAP-1-dependent apoptotic cascade. MOAP-1−/− mice were found to exhibit reduced neuronal loss and smaller infarct volume 24 h after tMCAO when compared to MOAP-1+/+ mice. Correspondingly, MOAP-1−/− mice also showed better integrity of neurological functions as demonstrated by their performance in the rotarod test. Therefore, both in vitro and in vivo data presented strongly support the conclusion that MOAP-1 is an important apoptotic modulator in ischemic injury. These results may suggest that a reduction of MOAP-1 function in the brain could be a potential therapeutic approach in the treatment of acute stroke.


1993 ◽  
Vol 16 (5_suppl) ◽  
pp. 8-12 ◽  
Author(s):  
A.M. Vannucchi ◽  
A. Bosi ◽  
A. Grossi ◽  
S. Guidi ◽  
R. Saccardi ◽  
...  

The issue of the role of erythropoietin (Epo) in the erythroid reconstitution after bone marrow transplantation (BMT) has been addressed in several recent studies. A defective Epo production in response to anemia has been shown to occur in patients undergoing allogeneic BMT unlike in most of those subjected to an autologous rescue. The factors involved in the inadeguate Epo production in BMT are discussed, with particular attention to the role of the immunosuppressive drug cyclosporin-A, which has been shown to inhibit Epo production in both in vivo and in vitro models. The observation of defective Epo production eventually led to the development of clinical trials of recombinant human Epo (rhEpo) administration in BMT patients; the aims of these studies were to stimulate erythroid engraftment, hence reducing blood transfusion exposure. Although the number of patients studied up to now is relatively small, a benefit from rhEpo administration in terms of accelerated erythroid engraftment seems very likely, and it may also be associated with decreased transfusional needs in most treated patients. However, further studies are needed to better define indications, dosages and schedules of rhEpo in BMT patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Judit Gil-Zamorano ◽  
João Tomé-Carneiro ◽  
María-Carmen Lopez de las Hazas ◽  
Lorena del Pozo-Acebo ◽  
M. Carmen Crespo ◽  
...  

Abstract The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.


2015 ◽  
Vol 36 (4) ◽  
pp. 1539-1551 ◽  
Author(s):  
Qian Yu ◽  
Zhihong Lu ◽  
Lei Tao ◽  
Lu Yang ◽  
Yu Guo ◽  
...  

Background/Aims: Stroke is among the top causes of death worldwide. Neuroprotective agents are thus considered as potentially powerful treatment of stroke. Methods: Using both HT22 cells and male Sprague-Dawley rats as in vitro and in vivo models, we investigated the effect of NaHS, an exogenous donor of H2S, on the focal cerebral ischemia-reperfusion (I/R) induced brain injury. Results: Administration of NaHS significantly decreased the brain infarcted area as compared to the I/R group in a dose-dependent manner. Mechanistic studies demonstrated that NaHS-treated rats displayed significant reduction of malondialdehyde content, and strikingly increased activity of superoxide dismutases and glutathione peroxidase in the brain tissues compared with I/R group. The enhanced antioxidant capacity as well as restored mitochondrial function are NaHS-treatment correlated with decreased cellular reactive oxygen species level and compromised apoptosis in vitro or in vivo in the presence of NaHS compared with control. Further analysis revealed that the inhibition of PARP-1 cleavage and AIF translocation are involved in the neuroprotective effects of NaHS. Conclusion: Collectively, our results suggest that NaHS has potent protective effects against the brain injury induced by I/R. NaHS is possibly effective through inhibition of oxidative stress and apoptosis.


2005 ◽  
Vol 25 (5) ◽  
pp. 2000-2013 ◽  
Author(s):  
Niklas Finnberg ◽  
Joshua J. Gruber ◽  
Peiwen Fei ◽  
Dorothea Rudolph ◽  
Anka Bric ◽  
...  

ABSTRACT DR5 (also called TRAIL receptor 2 and KILLER) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (also called TRAIL and Apo2 ligand). DR5 is a transcriptional target of p53, and its overexpression induces cell death in vitro. However, the in vivo biology of DR5 has remained largely unexplored. To better understand the role of DR5 in development and in adult tissues, we have created a knockout mouse lacking DR5. This mouse is viable and develops normally with the exception of having an enlarged thymus. We show that DR5 is not expressed in developing embryos but is present in the decidua and chorion early in development. DR5-null mouse embryo fibroblasts expressing E1A are resistant to treatment with TRAIL, suggesting that DR5 may be the primary proapoptotic receptor for TRAIL in the mouse. When exposed to ionizing radiation, DR5-null tissues exhibit reduced amounts of apoptosis compared to wild-type thymus, spleen, Peyer's patches, and the white matter of the brain. In the ileum, colon, and stomach, DR5 deficiency was associated with a subtle phenotype of radiation-induced cell death. These results indicate that DR5 has a limited role during embryogenesis and early stages of development but plays an organ-specific role in the response to DNA-damaging stimuli.


Sign in / Sign up

Export Citation Format

Share Document