scholarly journals The Combination of Cigarette Smoking and Alcohol Consumption Synergistically Increases Reactive Carbonyl Species in Human Male Plasma

2021 ◽  
Vol 22 (16) ◽  
pp. 9043
Author(s):  
Kanae Mure ◽  
Susumu Tomono ◽  
Minae Mure ◽  
Mano Horinaka ◽  
Michihiro Mutoh ◽  
...  

Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related diseases. Although it has been reported that the combination of these habits worsens risks, the underlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications of biological molecules, leading to alterations in cellular signaling pathways, and total RCS levels have been used as a lipid peroxidation marker linked to lifestyle-related diseases. In this study, at least 41 types of RCS were identified in the lipophilic fraction of plasma samples from 40 subjects using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Higher levels of 10 alkanals, 5 trans-2-alkenals, 1 cis-4-alkenal, and 3 alkadienals were detected in the smoking/drinking group (N = 10) as compared to those with either habit (N = 10 each) or without both habits (N = 10) in the analysis of covariances adjusted for age and BMI. The levels of 3 alkanals, 1 trans-2-alkenal, 1 alkadienal, and 1 4-hydroxy-2-alkenal in the smoking/drinking group were significantly higher than those in the no-smoking/drinking and no-smoking/no-drinking groups. These results strongly indicate that the combination of cigarette smoking and alcohol drinking synergistically increases the level and variety of RCS in the circulating blood, and may further jeopardize cellular function.

2019 ◽  
Vol 10 ◽  
Author(s):  
Jun’ichi Mano ◽  
Sayaka Kanameda ◽  
Rika Kuramitsu ◽  
Nagisa Matsuura ◽  
Yasuo Yamauchi

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 690
Author(s):  
Giancarlo Aldini ◽  
Alessandra A. Altomare

The Special issue is composed of 13 contributions: 9 research papers and 4 reviews [...]


Molecules ◽  
2016 ◽  
Vol 21 (3) ◽  
pp. 280 ◽  
Author(s):  
Sung Hwang ◽  
Yoon-Mi Lee ◽  
Giancarlo Aldini ◽  
Kyung-Jin Yeum

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 391 ◽  
Author(s):  
Mano ◽  
Biswas ◽  
Sugimoto

As reactive oxygen species (ROS) play critical roles in plants to determine cell fate in various physiological situations, there is keen interest in the biochemical processes of ROS signal transmission. Reactive carbonyl species (RCS), the ,-unsaturated aldehydes and ketones produced from lipid peroxides, due to their chemical property to covalently modify protein, can mediate ROS signals to proteins. Comprehensive carbonyl analysis in plants has revealed that more than a dozen different RCS, e.g., acrolein, 4-hydroxy-(E)-2-nonenal and malondialdehyde, are produced from various membranes, and some of them increase and modify proteins in response to oxidative stimuli. At early stages of response, specific subsets of proteins are selectively modified with RCS. The involvement of RCS in ROS signaling can be judged on three criteria: (1) A stimulus to increase the ROS level in plants leads to the enhancement of RCS levels. (2) Suppression of the increase of RCS by scavenging enzymes or chemicals diminishes the ROS-induced response. (3) Addition of RCS to plants evokes responses similar to those induced by ROS. On these criteria, the RCS action as damaging/signaling agents has been demonstrated for root injury, programmed cell death, senescence of siliques, stomata response to abscisic acid, and root response to auxin. RCS thus act as damage/signal mediators downstream of ROS in a variety of physiological situations. A current picture and perspectives of RCS research are presented in this article.


Sign in / Sign up

Export Citation Format

Share Document