scholarly journals Epigenetic Alterations Related to Gestational Diabetes Mellitus

2021 ◽  
Vol 22 (17) ◽  
pp. 9462
Author(s):  
Jorge Valencia-Ortega ◽  
Renata Saucedo ◽  
Martha A. Sánchez-Rodríguez ◽  
José G. Cruz-Durán ◽  
Edgar G. Ramos Martínez

Gestational diabetes mellitus (GDM) is the most common metabolic complication in pregnancy, which affects the future health of both the mother and the newborn. Its pathophysiology involves nutritional, hormonal, immunological, genetic and epigenetic factors. Among the latter, it has been observed that alterations in DNA (deoxyribonucleic acid) methylation patterns and in the levels of certain micro RNAs, whether in placenta or adipose tissue, are related to well-known characteristics of the disease, such as hyperglycemia, insulin resistance, inflammation and excessive placental growth. Furthermore, epigenetic alterations of gestational diabetes mellitus are observable in maternal blood, although their pathophysiological roles are completely unknown. Despite this, it has not been possible to determine the causes of the epigenetic characteristics of GDM, highlighting the need for integral and longitudinal studies. Based on this, this article summarizes the most relevant and recent studies on epigenetic alterations in placenta, adipose tissue and maternal blood associated with GDM in order to provide the reader with a general overview of the subject and indicate future research topics.

2021 ◽  
Author(s):  
Maria Grazia Dalfrà ◽  
Silvia Burlina ◽  
Annunziara Lapolla

Gestational diabetes mellitus (GDM) is the more frequent metabolic complication of pregnancy with a prevalence that is significantly increased in the last decade accounting for 12–18% of all pregnancies. Recent evidences strongly suggests that epigenetic profile changes could be involved in the onset of GDM and its related maternal and fetal complications. In particular, the unfavorable intrauterine environment related to hyperglycemia, a feature of GDM, has been evidenced to exert a negative impact on the establishment of the epigenome of the offspring. Furthermore the adverse in utero environment could be one of the mechanisms engaged in the development of adult chronic diseases. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations.


2013 ◽  
Author(s):  
Beata Matyjaszek-Matuszek ◽  
Mariusz Kowalczyk ◽  
Agnieszka Lagowska-Batyra ◽  
Wojciech Gernand ◽  
Andrzej Nowakowski ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 538-545 ◽  
Author(s):  
Aziz Homayouni ◽  
Nahal Bagheri ◽  
Sakineh Mohammad-Alizadeh-Charandabi ◽  
Neda Kashani ◽  
Noshin Mobaraki-Asl ◽  
...  

Background: : Gestational Diabetes Mellitus (GDM) is a health problem that is increasing around the world. Introduction:: Prevention of GDM, rather than treatment, could have several benefits in terms of both health and economic cost. Even a slight reduction in maternal glucose in non-diabetic women, particularly in women at high risk for GDM, may have significant benefits for pregnancy results and the future health of off-springs. Probiotics are a relatively new intervention, which are assessed by mothers’ metabolism, and can reduce blood sugar levels, prevent gestational diabetes and reduce the maternal and fetal complications resulting from it. The aim of this study was to review the studies on the prevention of gestational diabetes and assess the potential beneficial effects of probiotics on gestational diabetes and their possible mechanism of action. Method:: Articles compiled through clinical trials indexed in PubMed, Science Direct, Cochran, and Medlib between 2000 and 2017, with the keywords probiotics, prevention, and gestational diabetes mellitus were selected. Result:: Considering the potential of probiotics in the modulation of gut microbiota, naturalization increases intestinal permeability, regulation of pro-inflammatory mediators’ secretion and thereby controlling local and systemic inflammation results in decreasing intestinal permeability, enhancing the immune system. It likely has the ability to prevent or control diabetes during pregnancy although confirmatory studies are still needed. Conclusion:: Experimental and clinical evidence support the supposition that the modulation of the gut microbiota via probiotic microorganisms could be effective in the prevention of gestational diabetes mellitus.


2021 ◽  
Vol 10 (4) ◽  
pp. 835
Author(s):  
Manoja P. Herath ◽  
Jeffrey M. Beckett ◽  
Andrew P. Hills ◽  
Nuala M. Byrne ◽  
Kiran D. K. Ahuja

Exposure to untreated gestational diabetes mellitus (GDM) in utero increases the risk of obesity and type 2 diabetes in adulthood, and increased adiposity in GDM-exposed infants is suggested as a plausible mediator of this increased risk of later-life metabolic disorders. Evidence is equivocal regarding the impact of good glycaemic control in GDM mothers on infant adiposity at birth. We systematically reviewed studies reporting fat mass (FM), percent fat mass (%FM) and skinfold thicknesses (SFT) at birth in infants of mothers with GDM controlled with therapeutic interventions (IGDMtr). While treating GDM lowered FM in newborns compared to no treatment, there was no difference in FM and SFT according to the type of treatment (insulin, metformin, glyburide). IGDMtr had higher overall adiposity (mean difference, 95% confidence interval) measured with FM (68.46 g, 29.91 to 107.01) and %FM (1.98%, 0.54 to 3.42) but similar subcutaneous adiposity measured with SFT, compared to infants exposed to normal glucose tolerance (INGT). This suggests that IGDMtr may be characterised by excess fat accrual in internal adipose tissue. Given that intra-abdominal adiposity is a major risk factor for metabolic disorders, future studies should distinguish adipose tissue distribution of IGDMtr and INGT.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaoqian Yin ◽  
Yan Huo ◽  
Li Liu ◽  
Yixing Pan ◽  
Suxin Liu ◽  
...  

Objectives. The aim was to investigate neutrophil gelatinase-associated lipocalin (NGAL) levels in the serum and term placentas and its potential role in gestational diabetes mellitus (GDM). Methods. A total of 49 GDM subjects and 39 age-matched women with normal pregnancies were recruited. We examined serum concentrations of NGAL and tumor necrosis factor-α (TNF-α) in maternal blood and cord blood and their expression levels in the term placentas and umbilical cord. Results. Serum NGAL levels were significantly higher in GDM patients than in normal pregnant controls both in the maternal blood (4.80 ± 1.99 vs. 3.66 ± 1.13, P=0.001) and the cord blood (4.70 ± 2.08 vs. 3.85 ± 1.44, P=0.027). Moreover, serum NGAL levels exhibited a positive correlation with various parameters of insulin resistance. Maternal serum NGAL levels positively correlated with the NGAL levels found in the cord blood of the control (r = 0.399, P=0.012) and the GDM subjects (r = 0.349, P=0.014). Finally, the expression of NGAL protein levels in the placenta (1.22 ± 0.39 vs. 0.65 ± 0.23, P<0.001) and umbilical cord (0.65 ± 0.23 vs. 0.25 ± 0.10, P<0.001) were higher in GDM women than those noted in the control subjects. In the GDM group, maternal serum NGAL levels exhibited a positive correlation with placental NGAL mRNA and protein levels (r = 0.848, P=0.008; r = 0.636, P=0.011, respectively). Conclusions. NGAL may be an important adipokine involved in GDM and fetal development. The oversecretion of NGAL from the placenta may contribute to the elevated levels of serum NGAL in gestational diabetes mellitus.


Endocrinology ◽  
2014 ◽  
Vol 155 (5) ◽  
pp. 1982-1990 ◽  
Author(s):  
Zhonghua Shi ◽  
Chun Zhao ◽  
Xirong Guo ◽  
Hongjuan Ding ◽  
Yugui Cui ◽  
...  

Omental adipose tissue plays a central role in insulin resistance in gestational diabetes mellitus (GDM), and the molecular mechanisms leading to GDM remains vague. Evidence demonstrates that maternal hormones, such as estradiol, contribute to insulin resistance in GDM. In this study we determined the differential expression patterns of microRNAs (miRNAs) in omental adipose tissues from GDM patients and pregnant women with normal glucose tolerance using AFFX miRNA expression chips. MiR-222, 1 of 17 identified differentially expressed miRNAs, was found to be significantly up-regulated in GDM by quantitative real-time PCR (P &lt; .01), and its expression was closely related with serum estradiol level (P &lt; .05). Furthermore, miR-222 expression was significantly increased in 3T3-L1 adipocytes with a high concentration of 17β-estradiol stimulation (P &lt; .01), whereas the expressions of estrogen receptor (ER)-α protein and insulin-sensitive membrane transporter glucose transporter 4 (GLUT4) protein (P &lt; .01) were markedly reduced. In addition, ERα was shown to be a direct target of miR-222 in 3T3-L1 adipocytes by using the luciferase assay. Finally, antisense oligonucleotides of miR-222 transfection was used to silence miR-222 in 3T3-L1 adipocytes. The results showed that the expressions of ERα and GLUT4, the insulin-stimulated translocation of GLUT4 from the cytoplasm to the cell membrane and glucose uptake in mature adipocytes were dramatically increased (P &lt; .01). In conclusion, miR-222 is a potential regulator of ERα expression in estrogen-induced insulin resistance in GDM and might be a candidate biomarker and therapeutic target for GDM.


Sign in / Sign up

Export Citation Format

Share Document