scholarly journals Recent Advanced Metabolic and Genetic Engineering of Phenylpropanoid Biosynthetic Pathways

2021 ◽  
Vol 22 (17) ◽  
pp. 9544
Author(s):  
Muhammad Anwar ◽  
Liu Chen ◽  
Yibo Xiao ◽  
Jinsong Wu ◽  
Lihui Zeng ◽  
...  

The MYB transcription factors (TFs) are evolving as critical role in the regulation of the phenylpropanoid and tanshinones biosynthetic pathway. MYB TFs relate to a very important gene family, which are involved in the regulation of primary and secondary metabolisms, terpenoids, bioactive compounds, plant defense against various stresses and cell morphology. R2R3 MYB TFs contained a conserved N-terminal domain, but the domain at C-terminal sorts them different regarding their structures and functions. MYB TFs suppressors generally possess particular repressive motifs, such as pdLNLD/ELxiG/S and TLLLFR, which contribute to their suppression role through a diversity of complex regulatory mechanisms. A novel flower specific “NF/YWSV/MEDF/LW” conserved motif has a great potential to understand the mechanisms of flower development. In the current review, we summarize recent advanced progress of MYB TFs on transcription regulation, posttranscriptional, microRNA, conserved motif and propose directions to future prospective research. We further suggest there should be more focus on the investigation for the role of MYB TFs in microalgae, which has great potential for heterologous protein expression system for future perspectives.

Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yanli Zhang ◽  
Linley R. Schofield ◽  
Carrie Sang ◽  
Debjit Dey ◽  
Ron S. Ronimus

(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC fromMethanobrevibacter milleraeSM9 was cloned and expressed inEscherichia coliand biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen forα-ketoglutarate. Optimal activity was observed at pH 6.5. The apparentKMfor coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate theVmaxwas 93.9 μmol min−1 mg−1andkcatwas 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
L. Briand ◽  
G. Marcion ◽  
A. Kriznik ◽  
J. M. Heydel ◽  
Y. Artur ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 25-37
Author(s):  
Tulsi Jayakumar

A critical challenge in the long-term survival and growth of family businesses is the adoption of professionalisation. The latter itself, when viewed as a multi-dimensional construct, would involve a critical role assigned to HR and HR control systems. This article then seeks to undertake an exploratory research to understand the current reality and the future perspectives of professionalisation in Indian family businesses through the lens of HR and HR control systems. Six caselets explore the experiences of six representative family businesses with regard to their professionalisation journey. The article finds that while the next-generation views professionalisation as imperative for scaling up, HR is still in its infancy stage in these Indian family firms. This would have ramifications for the outcomes of such professionalisation. The article concludes that HR would need to be assigned the role of a regenerative function, rather than a back-end administrative role that seems to be the current reality.


2022 ◽  
Vol 30 (1) ◽  
pp. 777-797
Author(s):  
Okojie Eseoghene Lorrine ◽  
Raja Noor Zaliha Raja Abd. Rahman ◽  
Joo Shun Tan ◽  
Raja Farhana Raja Khairuddin ◽  
Abu Bakar Salleh ◽  
...  

Meyerozyma guilliermondii strain SO, a newly isolated yeast species from spoilt orange, has been used as a host to express the recombinant proteins using methylotrophic yeast promoters. However, as a novel yeast expression system, the vacuolar proteases of this yeast have not been determined, which may have contributed to the low level of heterologous protein secretions. Thus, this study aimed to determine intra- and extracellular proteolytic activity and identify the putative vacuolar proteases using bioinformatics techniques. A clear zone was observed from the nutrient agar skimmed milk screening plate. Proteolytic activity of 117.30 U/ml and 75 U/ml were obtained after 72 h of cultivation for both extracellular and intracellular proteins, respectively. Next, the Hidden Markov model (HMM) was used to detect the presence of the vacuolar proteases (PEP4 and PRB1) from the strain SO proteome. Aspartyl protease (PEP4) with 97.55% identity to Meyerozyma sp. JA9 and a serine protease (PRB1) with 70.91% identity to Candida albicans were revealed. The homology with other yeast vacuolar proteases was confirmed via evolutionary analysis. PROSPER tool prediction of cleavage sites postulated that PEP4 and PRB1 might have caused proteolysis of heterologous proteins in strain SO. In conclusion, two putative vacuolar proteases (PEP4 and PRB1) were successfully identified in strain SO. Further characterization can be done to understand their specific properties, and their effects on heterologous protein expression can be conducted via genome editing.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Chuanyun Li ◽  
Tong Zhou ◽  
Jing Chen ◽  
Rong Li ◽  
Huan Chen ◽  
...  

AbstractExosomal miRNAs have attracted much attention due to their critical role in regulating genes and the altered expression of miRNAs in virtually all cancers affecting humans (Sun et al. in Mol Cancer 17(1):14, 2018). Exosomal miRNAs modulate processes that interfere with cancer immunity and microenvironment, and are significantly involved in tumor growth, invasion, metastasis, angiogenesis and drug resistance. Fully investigating the detailed mechanism of miRNAs in the occurrence and development of various cancers could help not only in the treatment of cancers but also in the prevention of malignant diseases. The current review highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs. Exosomal miRNAs that modulate cancer cell-to-cell communication, impacting tumor growth, angiogenesis, metastasis and multiple biological features, were discussed. Finally, the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers was summarized, as well as their usefulness in detecting cancer resistance to therapeutic agents.


Author(s):  
Kerem Cahit Gurol ◽  
Michael Aschner ◽  
Donald R Smith ◽  
Somshuvra Mukhopadhyay

The essential metal manganese (Mn) induces incurable neurotoxicity at elevated levels that manifests as parkinsonism in adults and fine motor and executive function deficits in children. Studies on Mn neurotoxicity have largely focused on the role and mechanisms of disease induced by elevated Mn exposure from occupational or environmental sources. In contrast, the critical role of excretion in regulating Mn homeostasis and neurotoxicity has received less attention although (1) studies on Mn excretion date back to 1920s; (2) elegant radiotracer Mn excretion assays in the 1940s-60s established the routes of Mn excretion; and; (3) studies in patients with liver cirrhosis in the 1990s-2000s identified an association between decreased Mn excretion and the risk of developing Mn-induced parkinsonism in the absence of elevated Mn exposure. Notably, the last few years have seen renewed interest in Mn excretion largely driven by the discovery that hereditary Mn neurotoxicity due to mutations in SLC30A10 or SLC39A14 are caused, at least in part, by deficits in Mn excretion. Quite remarkably, some of the recent results on SLC30A10 and SLC39A14 provide explanations for observations made ~40-50 years ago. The goal of the current review is to integrate the historic studies on Mn excretion with more contemporary recent work, and provide a comprehensive state-of-the-art overview of Mn excretion and its role in regulating Mn homeostasis and neurotoxicity. A related goal is to discuss the significance of some of the foundational studies on Mn excretion so that these highly consequential earlier studies remain influential in the field.


Sign in / Sign up

Export Citation Format

Share Document