scholarly journals Angiogenic Effects and Crosstalk of Adipose-Derived Mesenchymal Stem/Stromal Cells and Their Extracellular Vesicles with Endothelial Cells

2021 ◽  
Vol 22 (19) ◽  
pp. 10890
Author(s):  
Swarna Rautiainen ◽  
Timo Laaksonen ◽  
Raili Koivuniemi

Adipose-derived mesenchymal stem/stromal cells (ASCs) are an adult stem cell population able to self-renew and differentiate into numerous cell lineages. ASCs provide a promising future for therapeutic angiogenesis due to their ability to promote blood vessel formation. Specifically, their ability to differentiate into endothelial cells (ECs) and pericyte-like cells and to secrete angiogenesis-promoting growth factors and extracellular vesicles (EVs) makes them an ideal option in cell therapy and in regenerative medicine in conditions including tissue ischemia. In recent angiogenesis research, ASCs have often been co-cultured with an endothelial cell (EC) type in order to form mature vessel-like networks in specific culture conditions. In this review, we introduce co-culture systems and co-transplantation studies between ASCs and ECs. In co-cultures, the cells communicate via direct cell–cell contact or via paracrine signaling. Most often, ASCs are found in the perivascular niche lining the vessels, where they stabilize the vascular structures and express common pericyte surface proteins. In co-cultures, ASCs modulate endothelial cells and induce angiogenesis by promoting tube formation, partly via secretion of EVs. In vivo co-transplantation of ASCs and ECs showed improved formation of functional vessels over a single cell type transplantation. Adipose tissue as a cell source for both mesenchymal stem cells and ECs for co-transplantation serves as a prominent option for therapeutic angiogenesis and blood perfusion in vivo.

Author(s):  
Junya Suzuki ◽  
Yuuki Shimizu ◽  
Kazuhito Tsuzuki ◽  
Zhongyue Pu ◽  
Shingo Narita ◽  
...  

Therapeutic angiogenesis with autologous stem/progenitor cells is a promising novel strategy for treatment of severe ischemic diseases. Human clinical trials utilizing autologous adipose-derived regenerative cells (ADRCs) have not reported treatment-related critical adverse effects thus far. However, there is still a large knowledge gap whether treatment of ischemic diseases with angiogenic therapy using ADRCs would promote unfavorable angiogenesis associated with tumors in vivo. Herein, we addressed this clinical question using a mouse hind limb ischemia (HLI) and simultaneous remote tumor implantation model. C57BL/6J background wild-type mice were injected with murine B16F10 melanoma cells on their back, one day before ischemic surgery. These mice were subjected to surgical unilateral hindlimb ischemia, followed by ADRCs implantation or PBS injection into the hindlimb ischemic muscles on the next day. Intramuscular implantation of ADRCs enhanced tissue capillary density and blood flow examined by a laser Doppler blood perfusion analysis in hind limb. However, this therapeutic regimen for ischemic limb using ADRCs did not affect remote melanoma growth nor the density of its feeder artery, angiogenesis and lymphatic vessels compared to the PBS group. In addition, no distant metastases were detected in any of the mice regardless the group. In conclusion, local implantation of ADRCs promotes angiogenesis in response to tissue ischemia in the hind limb without promoting remote tumor growth and related angio/lymphangiogenesis. Therapeutic angiogenesis to the ischemic hind limb using ADRCs seems to be safe regarding remote tumor growth.


2006 ◽  
Vol 203 (5) ◽  
pp. 1235-1247 ◽  
Author(s):  
Aarif Y. Khakoo ◽  
Shibani Pati ◽  
Stasia A. Anderson ◽  
William Reid ◽  
Mohamed F. Elshal ◽  
...  

Emerging evidence suggests that both human stem cells and mature stromal cells can play an important role in the development and growth of human malignancies. In contrast to these tumor-promoting properties, we observed that in an in vivo model of Kaposi's sarcoma (KS), intravenously (i.v.) injected human mesenchymal stem cells (MSCs) home to sites of tumorigenesis and potently inhibit tumor growth. We further show that human MSCs can inhibit the in vitro activation of the Akt protein kinase within some but not all tumor and primary cell lines. The inhibition of Akt activity requires the MSCs to make direct cell–cell contact and can be inhibited by a neutralizing antibody against E-cadherin. We further demonstrate that in vivo, Akt activation within KS cells is potently down-regulated in areas adjacent to MSC infiltration. Finally, the in vivo tumor-suppressive effects of MSCs correlates with their ability to inhibit target cell Akt activity, and KS tumors engineered to express a constitutively activated Akt construct are no longer sensitive to i.v. MSC administration. These results suggest that in contrast to other stem cells or normal stromal cells, MSCs possess intrinsic antineoplastic properties and that this stem cell population might be of particular utility for treating those human malignancies characterized by dysregulated Akt.


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


2021 ◽  
Author(s):  
Xia Wang ◽  
Yinhua Wang ◽  
Guo Zhou ◽  
Yi Li ◽  
Huanhuan Huo ◽  
...  

Abstract Background Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of critical patients and is associated with high morbidity and mortality. The glomerular endothelial cell injury is the main characteristics during S-AKI. Ca2+ influx is a key step in the establishment of endothelial injury. Transient receptor vanilloid subtype 4 (TRPV4) ion channels are permeable to Ca2+ and are widely expressed in endothelial cells. However, the role of TRPV4 on glomerular endothelial inflammation in S-AKI has remained elusive. Methods Mouse glomerular endothelial cells (MRGEC) were used to test the molecular mechanism of TRPV4 on LPS-induced glomerular endothelial inflammation. The cecal-ligation-and-puncture (CLP) model was established by ligation of cecum with 4-0 suture and punctured with a 21-gauge needle. Then 0.2mL faeces was extruded from the puncture site to trigger peritoneal inflammation. Results In the present study, we found that blocking TRPV4 diminishes LPS-induced cytosolic Ca2+-elevations, which are essential for glomerular endothelial inflammation and barrier function. Furthermore, TRPV4 regulated LPS-induced phosphorylation and translocation of NF-κB and IRF-3 in mouse glomerular endothelial cells (MRGEC). Clamping intracellular Ca2+ mimics the LPS-induce response seen in the absence of TRPV4. In vivo, pharmacological blockade or knock down of TRPV4 reduced the inflammatory response of glomerular endothelial cells, inhibited translocation of NF-κB and IRF-3, increased survival rate and improved renal function in CLP-induced sepsis but without altering renal cortical blood perfusion. Conclusions Taken together, these results suggested that inhibition of TRPV4 ameliorates glomerular endothelial inflammation, kidney dysfunction, and increased mortality via mediating Ca2+ overload and NF-κB/IRF-3 activation. These discoveries may provide novel pharmacological strategies for the treatment of glomerular endothelial dysfunction and kidney injury during endotoxemia, sepsis, and other inflammatory diseases.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Junya Suzuki ◽  
Yuuki Shimizu ◽  
Kazuhito Tsuzuki ◽  
Zhongyue Pu ◽  
Shukuro Yamaguchi ◽  
...  

Introduction: Implantation of adipose-derived regenerative cells (ADRC) is a promising novel strategy to augment angiogenesis and blood perfusion recovery in ischemic diseases with no other therapeutic option. However, there is a clinical concern underlying therapeutic angiogenesis that implantation of ADRC may promote tumor growth and metastasis via remote angiogenesis. Accordingly, we tested whether therapeutic angiogenesis with ADRC against hindlimb ischemia (HLI) would affect remote tumor growth and angiogenesis in a tumor-bearing mouse ischemic hindlimb model. Methods and results: B16F10-Luc (murine melanoma cells expressing luciferase, 1x106 cells/animal) were implanted to C57BL/6J mice’s (male, 8-10 weeks old, n=10) back. Mice were subjected to unilateral HLI surgery one day after tumor implantation. Then, mice were randomly assigned to the control group or the ADRC group (n=5 for each). ADRC (1x106 cells/animal) or PBS were implanted/injected into ischemic hindlimb muscles one day after the surgery. Blood perfusion recovery in HLI by laser Doppler perfusion imaging system and tumor size by a caliper were measured every week up to 21 days after surgery. At POD 21, tumor weight and luciferase activity in primary tumors obtained by in vivo bioluminescence imaging system were also evaluated. Immunohistochemistry by CD31 or LYVE1 staining was performed to detect feeder arteries or outflow lymphatic vessels in tumors. The results demonstrated that better blood perfusion recovery and more capillary density in HLI was observed in the ADRC group than in the control group (p<0.05, respectively). However, there were no significant differences in terms of tumor volume (p=0.95), tumor weight (p=0.88) and luciferase activity of primary tumor (p=0.92) between those two groups. No sign of distant metastasis was detected by macroscopic and pathological examination, and by in vivo bioluminescence imaging system in both groups. Further study also revealed that capillary density of peritumoral blood vessels or lymphatic vessels was not augmented by ADRC implantation into remote HLI. Conclusions: Our data indicated that therapeutic angiogenesis with ADRC implantation against HLI did not promote remote tumor growth, angiogenesis and metastasis.


Blood ◽  
2021 ◽  
Author(s):  
Kaushik Das ◽  
Shiva Keshava ◽  
Shabbir A Ansari ◽  
Vijay Kumar Reddy Kondreddy ◽  
Charles Esmon ◽  
...  

Recombinant FVIIa (rFVIIa) is used as a hemostatic agent to treat bleeding disorders in hemophilia patients with inhibitors and other groups of patients. Our recent studies showed that FVIIa binds endothelial cell protein C receptor (EPCR) and induces protease-activated receptor 1 (PAR1)-mediated biased signaling. The importance of FVIIa-EPCR-PAR1-mediated signaling in hemostasis is unknown. In the present study, we show that FVIIa induces the release of extracellular vesicles (EVs) from endothelial cells both in vitro and in vivo. Silencing of EPCR or PAR1 in endothelial cells blocked the FVIIa-induced generation of EVs. Consistent with these data, FVIIa treatment enhanced the release of EVs from murine brain endothelial cells isolated from wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice. In vivo studies revealed that administration of FVIIa to wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice, increase the number of circulating EVs. EVs released in response to FVIIa treatment exhibit enhanced procoagulant activity. Infusion of FVIIa-generated EVs and not control EVs to platelet-depleted mice increased thrombin generation at the site of injury and reduced blood loss. Administration of FVIIa-generated EVs or generation of EVs endogenously by administering FVIIa augmented the hemostatic effect of FVIIa. Overall, our data reveal that FVIIa treatment, through FVIIa-EPCR-PAR1 signaling, releases EVs from the endothelium into the circulation, and these EVs contribute to the hemostatic effect of FVIIa.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dmitry O Traktuev ◽  
Daniel N Prater ◽  
Aravind R Sanjeevaiah ◽  
Stephanie Merfeld-Clauss ◽  
Brian H Johnstone ◽  
...  

Introduction Both Endothelial progenitor cells (EPC) and adipose stromal cells (ASC) are under investigation as therapies for cardiovascular diseases. Both cell types are capable of modulating vascular assembly and are, thereby, capable of directly promoting revascularization of ischemic tissues. We have shown that EPC differentiate into endothelial cells to form small vessels, whereas ASC have pericytic properties and naturally stabilize vessels. In this study we tested the possibility that ASC would interact with EPC to assemble de novo vessels in collagen in an in vivo chimeric implant. Methods and Results Collagen implants embedded with either umbilical cord blood EPC or adult ASC or a 4:1 mixture of both (2x10 6 cells/ml) were implanted subcutaneously into NOD/SCID mice. After 14 d implants were harvested and evaluated by immunohistochemistry. There was a pronounced difference among the groups in vascular network assembly. The majority of vessels formed in the EPC and ASC monocultures were small capillaries bounded by a single endothelial layer. Conversely, 100% of the plugs embedded with both cell types were highly invaded with multilayered arteriolar vessels. The density of the CD31 + vessels in the EPC and co-culture plugs was 26.6 ± 5.8 and 122.4 ± 9.8 per mm 2 , respectively. No CD31 + cells of human origin were detected in the ASC monocultures, indicating that ASC, which do not express this EC-specific marker, engage murine EC or form pseudovessels in this system. The density of α-SMA + vessels with lumens per mm 2 was 13.1 ± 3.6 (EPC), 10.2 ± 3.5 (ASC) and 124.7 ± 19.7 (co-culture). The total overlap of CD31 + and SMA + vessels demonstrates that mature, multilayered conduits were formed with the co-culture. Moreover, the majority of these vessels were filled with erythrocytes (92.5 ± 16.2 per mm 2 ), indicating inosculation with the native vasculature, which was confirmed by ultrasound with echogenic microbubbles and persisted to at least 4 months. Conclusion This study is the first to demonstrate that non-transformed human EPC and ASC cooperatively form mature and stable vasculature with subsequent functional integration into a host vasculature system.


2020 ◽  
Vol 21 (3) ◽  
pp. 799 ◽  
Author(s):  
Joanna Lelek ◽  
Ewa K. Zuba-Surma

Mesenchymal stem/ stromal cells (MSCs) represent progenitor cells of various origin with multiple differentiation potential, representing the most studied population of stem cells in both in vivo pre-clinical and clinical studies. MSCs may be found in many tissue sources including extensively studied adipose tissue (ADSCs) and umbilical cord Wharton’s jelly (UC-MSCs). Most of sanative effects of MSCs are due to their paracrine activity, which includes also release of extracellular vesicles (EVs). EVs are small, round cellular derivatives carrying lipids, proteins, and nucleic acids including various classes of RNAs. Due to several advantages of EVs when compare to their parental cells, MSC-derived EVs are currently drawing attention of several laboratories as potential new tools in tissue repair. This review focuses on pro-regenerative properties of EVs derived from ADSCs and UC-MSCs. We provide a synthetic summary of research conducted in vitro and in vivo by employing animal models and within initial clinical trials focusing on neurological, cardiovascular, liver, kidney, and skin diseases. The summarized studies provide encouraging evidence about MSC-EVs pro-regenerative capacity in various models of diseases, mediated by several mechanisms. Although, direct molecular mechanisms of MSC-EV action are still under investigation, the current growing data strongly indicates their potential future usefulness for tissue repair.


2015 ◽  
Vol 129 (3) ◽  
pp. 259-269 ◽  
Author(s):  
Jin Cai ◽  
Weiwei Guan ◽  
Xiaorong Tan ◽  
Caiyu Chen ◽  
Liangpeng Li ◽  
...  

We set out to investigate whether and how SRY (sex-determining region, Y) DNAs in plasma EVs (extracellular vesicles) is involved in the pathogenesis of atherosclerosis. PCR and gene sequencing found the SRY gene fragment in plasma EVs from male, but not female, patients; EVs from male patients with CAD (coronary artery disease) had a higher SRY GCN (gene copy number) than healthy subjects. Additional studies found that leucocytes, the major source of plasma EVs, had higher SRY GCN and mRNA and protein expression in male CAD patients than controls. After incubation with EVs from SRY-transfected HEK (human embryonic kidney)-293 cells, monocytes (THP-1) and HUVECs (human umbilical vein endothelial cells), which do not endogenously express SRY protein, were found to express newly synthesized SRY protein. This resulted in an increase in the adherence factors CD11-a in THP-1 cells and ICAM-1 (intercellular adhesion molecule 1) in HUVECs. EMSA showed that SRY protein increased the promoter activity of CD11-a in THP-1 cells and ICAM-1 in HUVECs. There was an increase in THP-1 cells adherent to HUVECs after incubation with SRY-EVs. SRY DNAs transferred from EVs have pathophysiological significance in vivo; injection of SRY EVs into ApoE−/− (apolipoprotein-knockout) mice accelerated atherosclerosis. The SRY gene in plasma EVs transferred to vascular endothelial cells may play an important role in the pathogenesis of atherosclerosis; this mechanism provides a new approach to the understanding of inheritable CAD in men.


2021 ◽  
Author(s):  
Qingjie Wang ◽  
Le Zhang ◽  
Zhiqin Sun ◽  
Boyu Chi ◽  
Ailin Zou ◽  
...  

Abstract Aims Naturally secreted extracellular vesicles (EVs) play important roles in stem-mediated cardioprotection. This study aimed to investigate the cardioprotective function and underlying mechanisms of EVs derived from HIF-1a engineered mesenchymal stem cells (MSCs) in a rat model of AMI.Methods and Results EVs isolated from HIF-1a engineered MSCs (HIF-1a-EVs) and control MSCs (MSCs-EVs) were prepared. In in vitro experiments, the EVs were incubated with cardiomyocytes and endothelial cells exposed to hypoxia and serum deprivation (H/SD); in in vivo experiments, the EVs were injected in the acutely infarcted hearts of Sprague-Dawley rats. Compared with MSCs-EVs, HIF-1a-EVs significantly inhibited the apoptosis of cardiomyocytes and enhanced angiogenesis of endothelial cells; meanwhile, HIF-1a-EVs also significantly shrunk fibrotic area and strengthened cardiac function in infarcted rats. After treatment with EVs/RGD-biotin hydrogels, we observed longer retention, higher stability in HIF-1a-EVs, and stronger cardiac function in the rats. Quantitative real-time PCR (qRT-PCR) displayed that miRNA-221-3p was highly expressed in HIF-1a-EVs. After miR-221-3p was inhibited in HIF-1a-EVs, the biological effects of HIF-1a EVs on apoptosis and angiogenesis were attenuated.Conclusion EVs released by MSCs with HIF-1a overexpression can promote the angiogenesis of endothelial cells and the apoptosis of cardiomyocytes via upregulating the expression of miR-221-3p. RGD hydrogels can enhance the therapeutic efficacy of HIF-1a engineered MSC-derived EVs.


Sign in / Sign up

Export Citation Format

Share Document