Abstract 13143: Safety Evaluation of Therapeutic Angiogenesis With Adipose-derived Regenerative Cells for Ischemic Limb in a Tumor Bearing Model

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Junya Suzuki ◽  
Yuuki Shimizu ◽  
Kazuhito Tsuzuki ◽  
Zhongyue Pu ◽  
Shukuro Yamaguchi ◽  
...  

Introduction: Implantation of adipose-derived regenerative cells (ADRC) is a promising novel strategy to augment angiogenesis and blood perfusion recovery in ischemic diseases with no other therapeutic option. However, there is a clinical concern underlying therapeutic angiogenesis that implantation of ADRC may promote tumor growth and metastasis via remote angiogenesis. Accordingly, we tested whether therapeutic angiogenesis with ADRC against hindlimb ischemia (HLI) would affect remote tumor growth and angiogenesis in a tumor-bearing mouse ischemic hindlimb model. Methods and results: B16F10-Luc (murine melanoma cells expressing luciferase, 1x106 cells/animal) were implanted to C57BL/6J mice’s (male, 8-10 weeks old, n=10) back. Mice were subjected to unilateral HLI surgery one day after tumor implantation. Then, mice were randomly assigned to the control group or the ADRC group (n=5 for each). ADRC (1x106 cells/animal) or PBS were implanted/injected into ischemic hindlimb muscles one day after the surgery. Blood perfusion recovery in HLI by laser Doppler perfusion imaging system and tumor size by a caliper were measured every week up to 21 days after surgery. At POD 21, tumor weight and luciferase activity in primary tumors obtained by in vivo bioluminescence imaging system were also evaluated. Immunohistochemistry by CD31 or LYVE1 staining was performed to detect feeder arteries or outflow lymphatic vessels in tumors. The results demonstrated that better blood perfusion recovery and more capillary density in HLI was observed in the ADRC group than in the control group (p<0.05, respectively). However, there were no significant differences in terms of tumor volume (p=0.95), tumor weight (p=0.88) and luciferase activity of primary tumor (p=0.92) between those two groups. No sign of distant metastasis was detected by macroscopic and pathological examination, and by in vivo bioluminescence imaging system in both groups. Further study also revealed that capillary density of peritumoral blood vessels or lymphatic vessels was not augmented by ADRC implantation into remote HLI. Conclusions: Our data indicated that therapeutic angiogenesis with ADRC implantation against HLI did not promote remote tumor growth, angiogenesis and metastasis.

Author(s):  
Junya Suzuki ◽  
Yuuki Shimizu ◽  
Kazuhito Tsuzuki ◽  
Zhongyue Pu ◽  
Shingo Narita ◽  
...  

Therapeutic angiogenesis with autologous stem/progenitor cells is a promising novel strategy for treatment of severe ischemic diseases. Human clinical trials utilizing autologous adipose-derived regenerative cells (ADRCs) have not reported treatment-related critical adverse effects thus far. However, there is still a large knowledge gap whether treatment of ischemic diseases with angiogenic therapy using ADRCs would promote unfavorable angiogenesis associated with tumors in vivo. Herein, we addressed this clinical question using a mouse hind limb ischemia (HLI) and simultaneous remote tumor implantation model. C57BL/6J background wild-type mice were injected with murine B16F10 melanoma cells on their back, one day before ischemic surgery. These mice were subjected to surgical unilateral hindlimb ischemia, followed by ADRCs implantation or PBS injection into the hindlimb ischemic muscles on the next day. Intramuscular implantation of ADRCs enhanced tissue capillary density and blood flow examined by a laser Doppler blood perfusion analysis in hind limb. However, this therapeutic regimen for ischemic limb using ADRCs did not affect remote melanoma growth nor the density of its feeder artery, angiogenesis and lymphatic vessels compared to the PBS group. In addition, no distant metastases were detected in any of the mice regardless the group. In conclusion, local implantation of ADRCs promotes angiogenesis in response to tissue ischemia in the hind limb without promoting remote tumor growth and related angio/lymphangiogenesis. Therapeutic angiogenesis to the ischemic hind limb using ADRCs seems to be safe regarding remote tumor growth.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hiranmoy Das ◽  
Matthew Joseph ◽  
Nasreen Abdulhameed ◽  
Hai-Quan Mao ◽  
Vincent J Pompili

Background: Umbilical cord blood (UCB) and marrow-derived CD133+ cells have been shown to mediate encouraging effects on therapeutic angiogenesis in both animal models and early clinical trials. Low numbers of CD133+ cells derived from a single donor have been a limitation of use of these cells in cardiovascular therapy. We hypothesized that an ex vivo aminated nanofiber system combined with cytokine supplementation would provide optimized topographical and biochemical signals to allow the expansion and potential functional augmentation of CD133+ cells without promoting terminal differentiation. Methods and Results: Human UCB derived CD133+ progenitor cells were isolated by MACS sorting and ex vivo expanded on aminated nanofiber plates with cytokine rich media. Cells harvested 10 days after expansion demonstrated a 225X increase in total number. Flow cytometric analysis demonstrated CD133–24%, CD34–93%, CXCR4–97%, LFA-97% surface expression. The expanded cells can uptake AcLDL efficiently and demonstrate a 2.3X increase in transwell migration to SDF-1 as compared to fresh UCB CD133+ cells. In vitro analysis revealed that expanded cells have potential to differentiate into endothelial or smooth muscle phenotype as demonstrated with CD31, vWF, VCAM-1 and F-pholloidin, α-actin, and SM myosin heavy chain immunocytochemistry when re-cultured for 14d in EGM2 or SMBM respectively. RT-QPCR analysis of 1% O 2 exposed (hypoxic) cells demonstrated a 2X increase in VEGF and 3X increase in IL-8 gene expression compared to normoxic control. In vivo functionality in a NOD/SCID mouse hind limb ischemic model demonstrated that mice treated with 5 x 10 6 expanded cells (n=7) augmented blood flow ratio (ischemic/control limb) as compared to mice treated with CD133+ cells (n=7) and control (n=7) at 28d. (control 0.32±.02 vs. UCB133+ 0.37±.02 vs. expanded cells 0.50±.04 p<0.01) Capillary density in ischemic hind-limb was increased at 28d (control 62.5±5.4 vs. expanded cell 97.6±2.5 p< 0.01) Conclusions: These studies demonstrate successful high level expansion of UCB derived CD133+ cells into functionally potent stem cells which have the capacity to differentiate into vascular cells and promote in vivo neovascularization.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi72-vi73
Author(s):  
Xiang-rong Ni ◽  
Jing Wang ◽  
Fu-rong Chen ◽  
Hai-ping Cai ◽  
Yan-jiao Yu ◽  
...  

Abstract OBJECTIVE Temozolomide (TMZ), is the first line chemotherapeutic drug for glioma. Previous studies have suggested that interferon (IFN) and levetiracetam (LEV) could respectively reverse the resistance of TMZ by down-regulating MGMT expression. This study, we aim to investigate the therapeutic effect of a cocktail chemotherapy regimen combining TMZ, LEV, IFN in vivo. METHODS Glioma cell lines U251 and SKMG-4 (MGMT protein expression positive), U138 and GSC-1(MGMT protein expression negative) were used for producing xenograft tumors. The xenograft tumors were established by subcutaneously injecting 1×106 glioma cells into female BALB/C nude mice and divided into 5 treatment groups: Control, TMZ, TMZ+IFN, TMZ+LEV, TMZ+LEV+IFN. The treatment with TMZ (50 mg/kg, i.p.), IFN (2×105 IU, s.c.), LEV (150 mg/kg, i.p.) once a day for five consecutive days and xenograft tumors were measured every two days. RESULTS We identified that U138, U251, SKMG-4 tumor growth among TMZ, TMZ+IFN, TMZ+LEV, TMZ+LEV+IFN were all significantly inhibited (P< 0.05), compared with the control. As for U251 and SKMG-4, tumor killing effect of all 4 treatment groups were not different (P > 0.05). In the treatment of mice bearing U138 glioma, the tumor weight of TMZ+LEV+IFN (0.2688±0.1169 g) group was the lowest and significantly lower than that of TMZ+LEV (0.6574±0.08174g, P=0.0261), TMZ+IFN(0.6108±0.07317 g, P=0.0381), and TMZ (0.9054±0.07154 g, P=0.0017) group. Glioma stem cells GSC-1 was highly resistant to TMZ, tumor volume of TMZ group was not different from control group (P >0.05). While compared with TMZ (1.993±0.1274 g) group, in TMZ+IFN (1.506±0.1223g, P=0.0203), TMZ+LEV (1.178±0.1807g, P=0.0042), and TMZ+LEV+IFN (1.049±0.2171 g, P=0.0038) groups, GSC-1 tumor growth were significantly inhibited(P< 0.05). CONCLUSION Our data demonstrate that both IFN and LEV can sensitize TMZ effect on glioma in vivo, even for MGMT(+) tumors, and TMZ-LEV-IFN cocktail regimen seems the best. Key words: glioma, TMZ, LEV, IFN


2014 ◽  
Vol 306 (5) ◽  
pp. R281-R290 ◽  
Author(s):  
Tyler S. Nelson ◽  
Ryan E. Akin ◽  
Michael J. Weiler ◽  
Timothy Kassis ◽  
Jeffrey A. Kornuta ◽  
...  

The ability to quantify collecting vessel function in a minimally invasive fashion is crucial to the study of lymphatic physiology and the role of lymphatic pump function in disease progression. Therefore, we developed a highly sensitive, minimally invasive research platform for quantifying the pumping capacity of collecting lymphatic vessels in the rodent tail and forelimb. To achieve this, we have integrated a near-infrared lymphatic imaging system with a feedback-controlled pressure cuff to modulate lymph flow. After occluding lymphatic flow by inflating a pressure cuff on the limb or tail, we gradually deflate the cuff while imaging flow restoration proximal to the cuff. Using prescribed pressure applications and automated image processing of fluorescence intensity levels in the vessels, we were able to noninvasively quantify the effective pumping pressure (Peff, pressure at which flow is restored after occlusion) and vessel emptying rate (rate of fluorescence clearance during flow occlusion) of lymphatics in the rat. To demonstrate the sensitivity of this system to changes in lymphatic function, a nitric oxide (NO) donor cream, glyceryl trinitrate ointment (GTNO), was applied to the tails. GTNO decreased Peff of the vessels by nearly 50% and the average emptying rate by more than 60%. We also demonstrate the suitability of this approach for acquiring measurements on the rat forelimb. Thus, this novel research platform provides the first minimally invasive measurements of Peff and emptying rate in rodents. This experimental platform holds strong potential for future in vivo studies that seek to evaluate changes in lymphatic health and disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Diana Spiegelberg ◽  
Andris Abramenkovs ◽  
Anja Charlotte Lundgren Mortensen ◽  
Sara Lundsten ◽  
Marika Nestor ◽  
...  

AbstractOncogenic client-proteins of the chaperone Heat shock protein 90 (HSP90) insure unlimited tumor growth and are involved in resistance to chemo- and radiotherapy. The HSP90 inhibitor Onalespib initiates the degradation of oncoproteins, and might also act as a radiosensitizer. The aim of this study was therefore to evaluate the efficacy of Onalespib in combination with external beam radiotherapy in an in vitro and in vivo approach. Onalespib downregulated client proteins, lead to increased apoptosis and caused DNA-double-strands. Monotherapy and combination with radiotherapy reduced colony formation, proliferation and migration assessed in radiosensitive HCT116 and radioresistant A431 cells. In vivo, a minimal treatment regimen for 3 consecutive days of Onalespib (3 × 10 mg/kg) doubled survival, whereas Onalespib with radiotherapy (3 × 2 Gy) caused a substantial delay in tumor growth and prolonged the survival by a factor of 3 compared to the HCT116 xenografted control group. Our results demonstrate that Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy, most prominent in the radiosensitive cell models. We speculate that the depletion and downregulation of client proteins involved in signalling, migration and DNA repair mechanisms is the cause. Thus, individually, or in combination with radiotherapy Onalespib inhibits tumor growth and has the potential to improve radiotherapy outcomes, prolonging the overall survival of cancer patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiuyu Chen ◽  
Minjie Lu ◽  
Ning Ma ◽  
Gang Yin ◽  
Chen Cui ◽  
...  

Purpose.To track the fate of micron-sized particles of iron oxide (MPIO) labeled mesenchymal stem cells (MSCs) in vivo in a rat myocardial infarction model using 7T magnetic resonance imaging (MRI) scanner.Materials and Methods.Male MSCs (2 × 106/50 μL) dual-labeled with MPIO and CM-DiI were injected into the infarct periphery 7 days after myocardial infarction (MI). The control group received cell-free media injection. The temporal stem cell location, signal intensity, and cardiac function were dynamically assessed using a 7T MRI at 24 h before transplantation (baseline), 3 days, 2 weeks, and 4 weeks after transplantation, respectively.Results.MR hypointensities caused by MPIOs were observed on T2⁎-weighted images at all time points after MSCs injection. Cine-MRI showed that MSCs moderated progressive left ventricular remodeling. Double staining for iron and CD68 revealed that most of the iron-positive cells were CD68-positive macrophages. Real-time PCR for rat SRY gene showed the number of survival MSCs considerably decreased after transplantation. MSC-treated hearts had significantly increased capillary density in peri-infarct region and lower cardiomyocytes apoptosis and fibrosis formation.Conclusions.Iron particles are not a reliable marker for in vivo tracking the long-term fate of MSCs engraftment. Despite of poor cell retention, MSCs moderate left ventricular remodeling after MI.


2021 ◽  
Vol 11 ◽  
Author(s):  
Noémi Bencze ◽  
Csaba Schvarcz ◽  
Gábor Kriszta ◽  
Lea Danics ◽  
Éva Szőke ◽  
...  

There is growing interest in the role of nerve-driven mechanisms in tumorigenesis and tumor growth. Capsaicin-sensitive afferents have been previously shown to possess antitumoral and immune-regulatory properties, the mechanism of which is currently poorly understood. In this study, we have assessed the role of these terminals in the triple negative 4T1 orthotopic mouse model of breast cancer. The ultrapotent capsaicin-analogue resiniferatoxin (RTX) was used for the selective, systemic desensitization of capsaicin-sensitive afferents. Growth and viability of orthotopically implanted 4T1 tumors were measured by caliper, in vivo MRI, and bioluminescence imaging, while tumor vascularity and protease enzyme activity were assessed using fluorescent in vivo imaging. The levels of the neuropeptides Calcitonin Gene-Related Peptide (CGRP), Substance P (SP), and somatostatin were measured from tumor tissue homogenates using radioimmunoassay, while tumor structure and peritumoral inflammation were evaluated by conventional use of CD31, CD45 and CD3 immunohistology. RTX-pretreated mice demonstrated facilitated tumor growth in the early phase measured using a caliper, which was coupled with increased tumor vascular leakage demonstrated using fluorescent vascular imaging. The tumor size difference dissipated by day seven. The MRI tumor volume was similar, while the intratumoral protease enzyme activity measured by fluorescence imaging was also comparable in RTX-pretreated and non-pretreated animals. Tumor viability or immunohistopathological profile was measured using CD3, CD31, and CD45 stains and did not differ significantly from the non-pretreated control group. Intratumoral somatostatin, CGRP, and SP levels were similar in both groups. Our results underscore the beneficial, antitumoral properties of capsaicin sensitive nerve terminals in this aggressive model of breast cancer, which is presumed to be due to the inhibition of tumor vascular bed disruption. The absence of any difference in intratumoral neuropeptide levels indicates non-neural sources playing a substantial part in their expression.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4180-4180
Author(s):  
Felipe Vences-Catalan ◽  
Chiung-Chi Kuo ◽  
Ranjani Rajapaksa ◽  
Caroline Duault ◽  
Ronald Levy ◽  
...  

Abstract The tetraspanin CD81 associates with CD19 on B cells; this molecular complex functions as co-receptor to lower the threshold of BCR-initiated B cell activation. Recently we have shown the importance of CD81 in tumor growth and metastasis of solid tumors (Vences-Catalan et al., 2015). However, the role of CD81 in lymphoid malignancies has not been explored. Previous studies demonstrated anti-proliferative effects of anti-CD81 antibodies on human B cell lymphomas using in vitro assays (Oren et al., 1990). Here we tested the therapeutic effect of an anti-human CD81 antibody in vivo against Raji and SUP-B8 B cell lymphomas using a xenograft model in SCID mice. Our studies demonstrated that our anti-human CD81 antibody (mouse IgG1) had therapeutic effect comparable to Rituximab (human IgG1) (Figure 1A). Yet, the two antibodies differ in their ability to mediate antibody-dependent cell cytotoxicity (ADCC), Rituximab is known to be highly effective, whereas the mouse IgG1 anti-CD81 antibody is not expected to mediate ADCC. To enhance the anti-CD81-mediated ADCC, we class switched the hybridoma to mouse IgG2a; we also engineered a chimeric antibody containing human IgG1ADCC-HIGH Fc constant region. Indeed, mouse IgG2a and the chimeric human IgG1 anti-CD81 mAb showed a remarkable increase in NK cell-mediated ADCC as well as complement-dependent cytotoxicity (CDC) when compared to Rituximab in vitro (data not shown) and in vivo (Figure 1B). These results suggest that CD81 can be a potential therapeutic target on B cell lymphomas by virtue of both its direct cytotoxic effect and as a mediator of ADCC and CDC. The humanized IgG1 version is being developed as a therapeutic candidate. Comparable efficacy of anti-CD81 to Rituximab. SCID mice were I.V.-injected with 1.5x106 Raji-GFP-Luc cells, tumors growth proceeded for 5 days before IP injection of 4 weekly doses of 100 ug of the indicated antibodies. (A) Survival of Raji-GFP-Luc bearing SCID mice given anti CD81 (n=30), Rituximab (n=20) or control MsIgG1 (n=30). (B) In vivo bioluminescence imaging of tumor growth in mice injected (left to right) with control mouse IgG1; anti-CD81 (MsIgG1); anti-CD81 MsIgG2a; chimeric anti-CD81 (HuIgG1) and Rituximab. Comparable efficacy of anti-CD81 to Rituximab. SCID mice were I.V.-injected with 1.5x106 Raji-GFP-Luc cells, tumors growth proceeded for 5 days before IP injection of 4 weekly doses of 100 ug of the indicated antibodies. (A) Survival of Raji-GFP-Luc bearing SCID mice given anti CD81 (n=30), Rituximab (n=20) or control MsIgG1 (n=30). / (B) In vivo bioluminescence imaging of tumor growth in mice injected (left to right) with control mouse IgG1; anti-CD81 (MsIgG1); anti-CD81 MsIgG2a; chimeric anti-CD81 (HuIgG1) and Rituximab. Disclosures Levy: Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 29 ◽  
Author(s):  
Ahmad Khan ◽  
Sune Jespersen ◽  
Ove Wiborg ◽  
Christopher Kroenke ◽  
Brian Hansen

This article presents longitudinal 1H-MR Spectroscopy (1H-MRS) data from ventral hippocampus and in vivo diffusion MRI (dMRI) data of the brain from control and anhedonic rats. The 1H-MRS and dMRI data were acquired using a 9.4 T preclinical imaging system. Before MRI experiments, animals were exposed to unpredictable chronic mild stress exposure for eight weeks and on the basis of a sucrose consumption test were identified as anhedonic and resilient. An age-matched group of animals, unexposed to the unpredictable chronic mild stress paradigm was considered as control. Data was acquired at the age of 18, 20 and 25 weeks in the anhedonic group and at the age of 18 and 22 weeks in the control group. This multimodal MRI data provides metabolic information of ventral hippocampus and dMRI based microstructural parameters of the brain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Catherine C. Applegate ◽  
Matthew R. Lowerison ◽  
Emma Hambley ◽  
Pengfei Song ◽  
Matthew A. Wallig ◽  
...  

AbstractProstate cancer (PCa) remains the second most diagnosed cancer worldwide. Higher body weight is associated with chronic inflammation, increased angiogenesis, and treatment-resistant tumor phenotypes. Dietary tomato reduces PCa risk, which may be due to tomato inhibition of angiogenesis and disruption of androgen signaling. This pilot study investigated the interplay between tomato powder (TP), incorporated into control (CON) and obesogenic (OB) diets, and PCa tumor growth and blood perfusion over time in a transgenic model of PCa (TRAMP). Ultrasound microvessel imaging (UMI) results showed good agreement with gold-standard immunohistochemistry quantification of endothelial cell density, indicating that this technique can be applied to non-invasively monitor tumor blood perfusion in vivo. Greater body weight was positively associated with tumor growth. We also found that TP significantly inhibited prostate tumor angiogenesis but that this inhibition differentially affected measured outcomes depending on CON or OB diets. TP led to reduced tumor growth, intratumoral inflammation, and intratumoral androgen-regulated gene expression (srd5a1, srd5a2) when incorporated with the CON diet but greater tumor growth and intratumoral gene expression when incorporated with the OB diet. Results from this study show that protective benefits from dietary tomato are lost, or may become deleterious, when combined with a Western-style diet.


Sign in / Sign up

Export Citation Format

Share Document