scholarly journals PD-L1 Inhibitors: Different Classes, Activities, and Mechanisms of Action

2021 ◽  
Vol 22 (21) ◽  
pp. 11797
Author(s):  
Ewa Surmiak ◽  
Katarzyna Magiera-Mularz ◽  
Bogdan Musielak ◽  
Damian Muszak ◽  
Justyna Kocik-Krol ◽  
...  

Targeting the programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) interaction has become an established strategy for cancer immunotherapy. Although hundreds of small-molecule, peptide, and peptidomimetic inhibitors have been proposed in recent years, only a limited number of drug candidates show good PD-1/PD-L1 blocking activity in cell-based assays. In this article, we compare representative molecules from different classes in terms of their PD-1/PD-L1 dissociation capacity measured by HTRF and in vitro bioactivity determined by the immune checkpoint blockade (ICB) co-culture assay. We point to recent discoveries that underscore important differences in the mechanisms of action of these molecules and also indicate one principal feature that needs to be considered, which is the eventual human PD-L1 specificity.

2021 ◽  
Author(s):  
Tiesuo Zhao ◽  
Yang Li ◽  
Miaomiao Liu ◽  
Lin Zhou ◽  
Zunge Wu ◽  
...  

Abstract Programmed cell death 1 ligand 1(PD-L1) binds with programmed cell death protein 1 (PD-1) to inhibit the responses of T cells. PD-L1 is significantly upregulated on tumor cells and blocking the PD-L1/PD-1 signal has become an important target of immunotherapy in clinic. At present, some old drugs of non-antitumor have been found that could play the effect of anti-tumor. Maprotiline, as a tetracyclic antidepressant, has been widely used for treating mental depression. Here, we study the anti-tumor effect of maprotiline by strengthening the immune response of mice. In vitro, treatment with maprotiline inhibits the proliferation and migration of B16 cells, increases the cell apoptosis. Importantly, treatment with maprotiline reduces the expression of PD-L1 in tumor tissue, prompts the ratios of CD4+ T cells, CD8+ T cells and NK cells in spleens, increases the infiltration of CD4+ and CD8+ T cells in tumor-tissues. In brief, we determine that maprotiline could prompt the anti-tumor immune response by inhibiting the PD-L1 in mice. This study may find a new inhibitor of PD-L1, which provides a new drug treated tumor in clinical.


2012 ◽  
Vol 209 (6) ◽  
pp. 1201-1217 ◽  
Author(s):  
Tadashi Yokosuka ◽  
Masako Takamatsu ◽  
Wakana Kobayashi-Imanishi ◽  
Akiko Hashimoto-Tane ◽  
Miyuki Azuma ◽  
...  

Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation.


2020 ◽  
Vol 21 (7) ◽  
pp. 2399
Author(s):  
Woan Ting Tay ◽  
Yi-Hsien Fang ◽  
Suet Theng Beh ◽  
Yen-Wen Liu ◽  
Ling-Wei Hsu ◽  
...  

Aim: Immunological checkpoint therapy is considered a powerful method for cancer therapy and acts by re-activating autologous T cells to kill the cancer cell. Myocarditis cases have been reported in cancer patients after immunological therapy; for example, nivolumab treatment is a monoclonal antibody that blocks programmed cell death-1/programmed cell death ligand-1 ligand interaction. This project provided insight into the inflammatory response as a benchmark to investigate the potential cardiotoxic effect of T cell response to the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis in regulating cardiomyocyte injury in vitro. Methods and Results: We investigated cardiomyopathy resulted from the PD-1/PD-L1 axis blockade using the anti-PD-1 antibody in Rockefeller University embryonic stem cells-derived cardiomyocytes (RUES2-CMs) and a melanoma tumor-bearing murine model. We found that nivolumab alone did not induce inflammatory-related proteins, including PD-L1 expression, and did not induce apoptosis, which was contrary to doxorubicin, a cardiotoxic chemotherapy drug. However, nivolumab was able to exacerbate the immune response by increasing cytokine and inflammatory gene expression in RUES2-CMs when co-cultured with CD4+ T lymphocytes and induced apoptosis. This effect was not observed when RUES2-CMs were co-cultured with CD8+ T lymphocytes. The in vivo model showed that the heart function of tumor-bearing mice was decreased after treatment with anti-PD-1 antibody and demonstrated a dilated left ventricle histological examination. The dilated left ventricle was associated with an infiltration of CD4+ and CD8+ T lymphocytes into the myocardium. PD-L1 and inflammatory-associated gene expression were significantly increased in anti-PD-1-treated tumor-bearing mice. Cleaved caspase-3 and mouse plasma cardiac troponin I expressions were increased significantly. Conclusion: PD-L1 expression on cardiomyocytes suppressed T-cell function. Blockade of PD-1 by nivolumab enhanced cardiomyocyte inflammation and apoptosis through the enhancement of T-cell response towards cardiomyocytes.


2019 ◽  
Vol 8 (10) ◽  
pp. 1534 ◽  
Author(s):  
Antje Tunger ◽  
Ulrich Sommer ◽  
Rebekka Wehner ◽  
Anne Sophie Kubasch ◽  
Marc-Oliver Grimm ◽  
...  

The administration of antibodies blocking the immune checkpoint molecules programmed cell death protein 1 (PD-1) or programmed cell death 1 ligand 1 (PD-L1) has evolved as a very promising treatment option for cancer patients. PD-1/PD-L1 inhibition has significantly enhanced expansion, cytokine secretion, and cytotoxic activity of CD4+ and CD8+ T lymphocytes, resulting in enhanced antitumor responses. Anti-PD-1 or anti-PD-L1 therapy has induced tumor regression and improved clinical outcome in patients with different tumor entities, including melanoma, non-small-cell lung cancer, and renal cell carcinoma. These findings led to the approval of various anti-PD-1 or anti-PD-L1 antibodies for the treatment of tumor patients. However, the majority of patients have failed to respond to this treatment modality. Comprehensive immune monitoring of clinical trials led to the identification of potential biomarkers distinguishing between responders and non-responders, the discovery of modes of treatment resistance, and the design of improved immunotherapeutic strategies. In this review article, we summarize the evolving landscape of biomarkers for anti-PD-1 or anti-PD-L1 therapy.


2020 ◽  
Vol 111 (9) ◽  
pp. 3184-3194
Author(s):  
Caiyun Zhang ◽  
Jiani Xiong ◽  
Yinxiang Lan ◽  
Jingyu Wu ◽  
Chengyan Wang ◽  
...  

2015 ◽  
Vol 122 (4) ◽  
pp. 795-805 ◽  
Author(s):  
Jessica M. Olson ◽  
Yasheng Yan ◽  
Xiaowen Bai ◽  
Zhi-Dong Ge ◽  
Mingyu Liang ◽  
...  

Abstract Background: Anesthetic cardioprotection reduces myocardial infarct size after ischemia–reperfusion injury. Currently, the role of microRNA in this process remains unknown. MicroRNAs are short, noncoding nucleotide sequences that negatively regulate gene expression through degradation or suppression of messenger RNA. In this study, the authors uncovered the functional role of microRNA-21 (miR-21) up-regulation after anesthetic exposure. Methods: MicroRNA and messenger RNA expression changes were analyzed by quantitative real-time polymerase chain reaction in cardiomyocytes after exposure to isoflurane. Lactate dehydrogenase release assay and propidium iodide staining were conducted after inhibition of miR-21. miR-21 target expression was analyzed by Western blot. The functional role of miR-21 was confirmed in vivo in both wild-type and miR-21 knockout mice. Results: Isoflurane induces an acute up-regulation of miR-21 in both in vivo and in vitro rat models (n = 6, 247.8 ± 27.5% and 258.5 ± 9.0%), which mediates protection to cardiomyocytes through down-regulation of programmed cell death protein 4 messenger RNA (n = 3, 82.0 ± 4.9% of control group). This protective effect was confirmed by knockdown of miR-21 and programmed cell death protein 4 in vitro. In addition, the protective effect of isoflurane was abolished in miR-21 knockout mice in vivo, with no significant decrease in infarct size compared with nonexposed controls (n = 8, 62.3 ± 4.6% and 56.2 ± 3.2%). Conclusions: The authors demonstrate for the first time that isoflurane mediates protection of cardiomyocytes against oxidative stress via an miR-21/programmed cell death protein 4 pathway. These results reveal a novel mechanism by which the damage done by ischemia/reperfusion injury may be decreased.


2020 ◽  
Vol 21 (15) ◽  
pp. 5456 ◽  
Author(s):  
Ayumi Kuzume ◽  
SungGi Chi ◽  
Nobuhiko Yamauchi ◽  
Yosuke Minami

Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.


2020 ◽  
Vol 222 (6) ◽  
pp. 989-994 ◽  
Author(s):  
Sebastian Wurster ◽  
Prema Robinson ◽  
Nathaniel D Albert ◽  
Jeffrey J Tarrand ◽  
Marisa Goff ◽  
...  

Abstract Pharmacological immune checkpoint blockade has revolutionized oncological therapies, and its remarkable success has sparked interest in expanding checkpoint inhibitor therapy in infectious diseases. Herein, we evaluated the efficacy of programmed cell death protein 1 (PD-1) blockade in a murine invasive pulmonary aspergillosis model. We found that, compared with isotype-treated infected control mice, anti–PD-1–treated mice had improved survival, reduced fungal burden, increased lung concentrations of proinflammatory cytokines and neutrophil-attracting chemokines, and enhanced pulmonary leukocyte accumulation. Furthermore, combined treatment with anti–PD-1 and caspofungin resulted in a significant survival benefit compared with caspofungin or anti–PD-1 therapy alone, indicating a synergistic effect between PD-1 inhibitors and immunomodulatory antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document