scholarly journals Mitochondrial Effects in the Liver of C57BL/6 Mice by Low Dose, High Energy, High Charge Irradiation

2021 ◽  
Vol 22 (21) ◽  
pp. 11806
Author(s):  
Brooke L. Barnette ◽  
Yongjia Yu ◽  
Robert L. Ullrich ◽  
Mark R. Emmett

Galactic cosmic rays are primarily composed of protons (85%), helium (14%), and high charge/high energy ions (HZEs) such as 56Fe, 28Si, and 16O. HZE exposure is a major risk factor for astronauts during deep-space travel due to the possibility of HZE-induced cancer. A systems biology integrated omics approach encompassing transcriptomics, proteomics, lipidomics, and functional biochemical assays was used to identify microenvironmental changes induced by HZE exposure. C57BL/6 mice were placed into six treatment groups and received the following irradiation treatments: 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), 350 MeV/n 28Si (0.2 Gy), 137Cs (1.0 Gy) gamma rays, 137Cs (3.0 Gy) gamma rays, and sham irradiation. Left liver lobes were collected at 30, 60, 120, 270, and 360 days post-irradiation. Analysis of transcriptomic and proteomic data utilizing ingenuity pathway analysis identified multiple pathways involved in mitochondrial function that were altered after HZE irradiation. Lipids also exhibited changes that were linked to mitochondrial function. Molecular assays for mitochondrial Complex I activity showed significant decreases in activity after HZE exposure. HZE-induced mitochondrial dysfunction suggests an increased risk for deep space travel. Microenvironmental and pathway analysis as performed in this research identified possible targets for countermeasures to mitigate risk.

2004 ◽  
Vol 851 ◽  
Author(s):  
L. K. Mansur ◽  
B. J. Frame ◽  
N. C. Gallego ◽  
S. B. Guetersloh ◽  
J. O. Johnson ◽  
...  

ABSTRACTRadiation doses from galactic cosmic rays (GCR) are a significant issue for spacecraft crew exposures in deep space. We report initial work to evaluate a range of materials for GCR shielding. Earlier work has shown that conventional spacecraft materials, aluminum and higher atomic number structural alloys, provide relatively little shielding and, under certain conditions, may increase radiation risk. Materials containing high proportions of hydrogen and other low atomic mass nuclei provide improved GCR shielding. Polyethylene (PE) is generally considered a good performance benchmark shield material. However, PE shielding occupies volume and adds mass to the spacecraft. In this work we investigate several materials that are shown to provide shielding similar to PE, but which could furnish additional spacecraft functions, possibly eliminating the need for materials currently used for structural support or thermal management. Carbon forms that can incorporate a large mass of hydrogen, as well as polymers and polymer composites are being explored. Calculations of shielding effectiveness in GCR spectra have been carried out. Experiments to measure shielding properties recently have been completed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) using high energy beans of O16. In this paper we report preliminary shielding results.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 324
Author(s):  
Pierre Cristofari

The search for Galactic pevatrons is now a well-identified key science project of all instruments operating in the very-high-energy domain. Indeed, in this energy range, the detection of gamma rays clearly indicates that efficient particle acceleration is taking place, and observations can thus help identify which astrophysical sources can energize particles up to the ~PeV range, thus being pevatrons. In the search for the origin of Galactic cosmic rays (CRs), the PeV range is an important milestone, since the sources of Galactic CRs are expected to accelerate PeV particles. This is how the central scientific goal that is ’solving the mystery of the origin of CRs’ has often been distorted into ’finding (a) pevatron(s)’. Since supernova remnants (SNRs) are often cited as the most likely candidates for the origin of CRs, ’finding (a) pevatron(s)’ has often become ’confirming that SNRs are pevatrons’. Pleasingly, the first detection(s) of pevatron(s) were not associated to SNRs. Moreover, all clearly detected SNRs have yet revealed to not be pevatrons, and the detection from VHE gamma rays from regions unassociated with SNRs, are reminding us that other astrophysical sites might well be pevatrons. This short review aims at highlighting a few important results on the search for Galactic pevatrons.


2019 ◽  
Vol 26 (16) ◽  
pp. 1707-1714 ◽  
Author(s):  
Adam Mitchell ◽  
Dominic Pimenta ◽  
Jaspal Gill ◽  
Haris Ahmad ◽  
Richard Bogle

Background A manned mission to Mars has been contemplated by the world's largest space agencies for a number of years. The duration of the trip would necessitate a much longer exposure to deep space radiation than any human has ever been exposed to in the past. Concern regarding cancer risk has thus far stalled the progress of deep space exploration; however, the effect of space radiation on the cardiovascular system is significantly less well understood. Discussion Damage by radiation in space is mediated by a number of sources, including X-rays, protons and heavier charged atomic nuclei (HZE ions, the high-energy component of galactic cosmic rays). Previously, only lunar mission astronauts have been exposed to significant deep space radiation, with all other missions being low earth orbits only. The effect of this radiation on the human body has been inconclusively studied, and the long-term damage caused to the vascular endothelium by this radiation due to the effect of high-energy particles is not well known. Conclusion Current radiation shielding technology, which would be viable for use in spacecraft, would not eliminate radiation risk. Similar to how a variety of shielding techniques are used every day by radiographers, again without full risk elimination, we need to explore and better understand the effect of deep space radiation in order to ensure the safety of those on future space missions.


1964 ◽  
Vol 83 (5) ◽  
pp. 3-34 ◽  
Author(s):  
F.R. Arutyunyan ◽  
V.A. Tumanyan

2021 ◽  
Author(s):  
Tiebin Yang ◽  
Feng Li ◽  
Rongkun Zheng

Perovskite halides hold great potential for high-energy radiation detection. Recent advancements in detecting alpha-, beta-, X-, and gamma-rays by perovskite halides are reviewed and an outlook on the device performance optimization is provided.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.


2020 ◽  
Vol 15 (S359) ◽  
pp. 178-179
Author(s):  
Saqib Hussain ◽  
Rafael Alves Batista ◽  
Elisabete Maria de Gouveia Dal Pino ◽  
Klaus Dolag

AbstractWe present results of the propagation of high-energy cosmic rays (CRs) and their secondaries in the intracluster medium (ICM). To this end, we employ three-dimensional cosmological magnetohydrodynamical simulations of the turbulent intergalactic medium to explore the propagation of CRs with energies between 1014 and 1019 eV. We study the interaction of test particles with this environment considering all relevant electromagnetic, photohadronic, photonuclear, and hadronuclear processes. Finally, we discuss the consequences of the confinement of high-energy CRs in clusters for the production of gamma rays and neutrinos.


2017 ◽  
Vol 8 (4) ◽  
pp. 225-230 ◽  
Author(s):  
Sanjit R. Konda ◽  
Ariana Lott ◽  
Hesham Saleh ◽  
Sebastian Schubl ◽  
Jeffrey Chan ◽  
...  

Introduction: Frailty in elderly trauma populations has been correlated with an increased risk of morbidity and mortality. The Score for Trauma Triage in the Geriatric and Middle-Aged (STTGMA) is a validated mortality risk score that evaluates 4 major physiologic criteria: age, comorbidities, vital signs, and anatomic injuries. The aim of this study was to investigate whether the addition of additional frailty variables to the STTGMA tool would improve risk stratification of a middle-aged and elderly trauma population. Methods: A total of 1486 patients aged 55 years and older who met the American College of Surgeons Tier 1 to 3 criteria and/or who had orthopedic or neurosurgical traumatic consultations in the emergency department between September 2014 and September 2016 were included. The STTGMAORIGINAL and STTGMAFRAILTY scores were calculated. Additional “frailty variables” included preinjury assistive device use (disability), independent ambulatory status (functional independence), and albumin level (nutrition). The ability of the STTGMAORIGINAL and the STTGMAFRAILTY models to predict inpatient mortality was compared using area under the receiver operating characteristic curves (AUROCs). Results: There were 23 high-energy inpatient mortalities (4.7%) and 20 low-energy inpatient mortalities (2.0%). When the STTGMAORIGINAL model was used, the AUROC in the high-energy and low-energy cohorts was 0.926 and 0.896, respectively. The AUROC for STTGMAFRAILTY for the high-energy and low-energy cohorts was 0.905 and 0.937, respectively. There was no significant difference in predictive capacity for inpatient mortality between STTGMAORIGINAL and STTGMAFRAILTY for both the high-energy and low-energy cohorts. Conclusion: The original STTGMA tool accounts for important frailty factors including cognition and general health status. These variables combined with other major physiologic variables such as age and anatomic injuries appear to be sufficient to adequately and accurately quantify inpatient mortality risk. The addition of other common frailty factors that account for does not enhance the STTGMA tool’s predictive capabilities.


Sign in / Sign up

Export Citation Format

Share Document