scholarly journals Metabolomics Analyses Reveal Metabolites Affected by Plant Growth-Promoting Endophytic Bacteria in Roots of the Halophyte Mesembryanthemum crystallinum

2021 ◽  
Vol 22 (21) ◽  
pp. 11813
Author(s):  
Ryota Kataoka ◽  
Mami Akashi ◽  
Takeshi Taniguchi ◽  
Yoshiyuki Kinose ◽  
Ahmet Emre Yaprak ◽  
...  

Mesembryanthemum crystallinum L. (common ice plant) is an edible halophyte. However, if ice plants are used to phytoremediate salinity soil, there are problems of slow initial growth, and a long period before active NaCl uptake occurs under higher salinity conditions. Application of endophytic bacteria may improve the problem, but there remain gaps in our understanding of how endophytic bacteria affect the growth and the biochemical and physiological characteristics of ice plants. The aims of this study were to identify growth-promoting endophytic bacteria from the roots of ice plants and to document the metabolomic response of ice plants after application of selected endophytic bacteria. Two plant growth-promoting endophytic bacteria were selected on the basis of their ability to promote ice plant growth. The two strains putatively identified as Microbacterium spp. and Streptomyces spp. significantly promoted ice plant growth, at 2-times and 2.5-times, respectively, compared with the control and also affected the metabolome of ice plants. The strain of Microbacterium spp. resulted in increased contents of metabolites related to the tricarboxylic acid cycle and photosynthesis. The effects of salt stress were alleviated in ice plants inoculated with the endobacterial strains, compared with uninoculated plants. A deeper understanding of the complex interplay among plant metabolites will be useful for developing microbe-assisted soil phytoremediation strategies, using Mesembryanthemum species.

2009 ◽  
Vol 22 (8) ◽  
pp. 1032-1037 ◽  
Author(s):  
Christian Scherling ◽  
Kristina Ulrich ◽  
Dietrich Ewald ◽  
Wolfram Weckwerth

Metabolic profiling via gas chromatography coupled to mass spectrometry was used to investigate the influence of endophytic bacteria on shoots of in vitro-grown poplar plants free from culturable endophytic bacteria. The results demonstrate that the occurrence of an endophytic Paenibacillus strain strongly affects the composition of the plant metabolites of in vitro-grown poplars. Eleven metabolites were significantly changed between inoculated and non-inoculated poplar plants as determined by two independent experiments. Detected shifts in the primary metabolism of the poplar plants pointed to a mutualistic interaction between bacteria able to fix nitrogen and the host plant with altered nitrogen assimilation patterns. The corresponding metabolic signature comprises increased asparagine and urea levels as well as depleted sugars and organic acids of the tricarboxylic acid cycle. These observations coincide with the fact that the Paenibacillus sp. strain P22 is able to grow without nitrogen in the medium, indicating nitrogen fixation from the air also known from other Paenibacillus spp. In combination with the detected plant-growth-promoting effects of the endophyte Paenibacillus P22, a novel mutualistic interaction is observed.


Rhizosphere ◽  
2019 ◽  
Vol 9 ◽  
pp. 10-17 ◽  
Author(s):  
Ahmad Mahmood ◽  
Rio Amaya ◽  
Oğuz Can Turgay ◽  
Ahmet Emre Yaprak ◽  
Takeshi Taniguchi ◽  
...  

3 Biotech ◽  
2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Bibiana Rios-Galicia ◽  
Catalina Villagómez-Garfias ◽  
Esaú De la Vega-Camarillo ◽  
Jairo Eder Guerra-Camacho ◽  
Nora Medina-Jaritz ◽  
...  

Author(s):  
R. Thamizh Vendan ◽  
D. Balachandar

Background: Symbiotic associations between legumes and Rhizobia are ancient and fundamental. However, the plant growth-promoting endophytes other than Rhizobia are not yet fully explored for pulses productivity. The present study was aimed to isolate efficient endophytic bacteria from pulses, assess their diversity, screen their plant growth-promoting activities and to test their potential as bio inoculants for pulses.Methods: We have isolated several endophytic bacteria from pulse crops more specifically from blackgram (Vigna mungo) and greengram (Vigna radiata). After careful screening, 15 promising endophytic isolates were selected for this study. The identification of endophytic bacterial isolates was performed by 16S rRNA gene sequencing. The isolates were tested for their potential for the plant growth-promoting traits such as nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore secretion and antifungal activity. Pot culture experiments were conducted with the screened potential endophytic cultures.Result: The 16S rRNA gene sequencing revealed that species of Enterobacter, Bacillus, Pantoea, Pseudomonas, Acromobacter, Ocrobacterium were found as endophytes in blackgram and greengram. The in vitro screening identified Bacillus pumilus (BG-E6), Pseudomonas fluorescens (BG-E5) and Bacillus licheniformis (BG-E3) from blackgram and Pseudomonas chlororaphis (GG-E2) and Bacillus thuringiensis (GG-E7) from greengram as potential plant growth-promoting endophytes. These strains showed antagonism against plant pathogenic fungi. Upon inoculation of these endophytic PGPR strains, the blackgram and greengram growth and yield got increased. Among the strains, BG-E6 recorded 14.7% increased yield in blackgram and GG-E2 accounted for a 19.5% yield increase in greengram compared to respective uninoculated control. The experimental results showed that there was a host specificity found among the endophytic bacterial cultures with pulses. The cross inoculation of endophytic strains did not perform well to enhance the growth and yield of their alternate hosts. 


2018 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Ryan Hilda Wandita ◽  
Sri Pujiyanto ◽  
Agung Suprihadi ◽  
Ratih Dewi Hastuti

Onions (Allium cepa L.) is one of the leading horticultural commodities in Indonesia and is often used as seasoning and traditional medicine. Onion has a high economic value and fluctuating prices so that domestic onion production needs to be improved, one of them with a presence of endophytic bacteria that act as plant growth promoting agent or Plant Growth Promoting Bacteria (PGPB). Endophytic bacteria isolated from the root, leaves, and bulbs. In this research has been tested endophytic bacteria of onion plants from Garut regency which has PGPB factors such as able to dissolve phosphate, and produce HCN. The results obtained 251 isolates of endophytic bacteria. Based on the characterization results, the superior isolates capable of dissolving phosphate with an average diameter of 0.45 cm is isolate II.B.1D.3, and 11 isolates capable of producing high HCN. These isolates can be used as PGPB agents so that they can be useful in increasing plant growth and onion production and biocontrol in suppressing pathogens. Keywords: PGPB, endophyte, onion, phosphate, HCN


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Yunus Musa ◽  
Abdul Mollah Jaya

The low productivity of cocoa plantations in Indonesia is partly due to the low quality of seeds, which refers to the impeded growth of cultivated cocoa nurseries. Seed is the initial growth of plants so the importance of giving special treatment to seeds will refer to better seed growth. Provision of Plant Growth Promoting Rhizobacteria (PGPR) microbes can produce indoleacetic acid (IAA) in plants to improve the quality of plant growth. This study aims to determine the effectiveness of the provision of Plant Growth Promoting Rhizobacteria bamboo rhizosphere against cocoa seed germination. The study was carried out in the farmer group garden, Gantarangkeke District, Bantaeng. This study was arranged in the form of a two-factor factorial design (F2F) in a randomized block design (RBD). The use of cocoa seed type as the first factor consisted of GTB (Gantarangkeke Bantaeng) local cocoa seed and MCC 01 cocoa seed and seed immersion treatment at PGPR rhizosphere bamboo concentration as the second factor consisting of 0% (control) concentration, 5%, 10 % and 15%. The results obtained indicate that administration of seeds with bamboo rhizosphere PGPR affects the germination (100.00%), the speed of seed growth (7.14%/etmal), as well as on abnormal seeds (10.00%). So that the provision of bamboo rhizosphere PGPR on cocoa seeds has an effective influence on seed germination and cocoa seedling development.


2021 ◽  
Vol 12 (2) ◽  
pp. 1143-1150
Author(s):  
Lavanya J ◽  
Chanthosh S ◽  
Reshma Shrii ◽  
Viknesh V ◽  
Deepika S ◽  
...  

The study was aimed to find an alternate approach for chemicals used in agriculture to avoid microbial infections. Fungal pathogens cause different types of plant diseases and affect a majority of edible crops by destroying the tissues of the plant in a direct or indirect mechanism. So, an alternative approach led to the development of biocontrol agents using endophytic  bacteria. A total of 8 endophytic bacteria were isolated from the root, stem, and leaves of radish (Raphanus sativus). The antagonistic activity of these bacteria against the 2 isolated plant pathogenic fungi was determined in vitro. Two out of eight bacteria showed more than 50% inhibitory activity against one fungus, were further characterized using the 16s rRNA sequencing method. On the basis of the phylogenetic tree of the 16s rRNA method, the endophytic bacterial samples were identified as Tonsilliphilus suis  and Exiguobacterium aurantiacum against plant pathogenic Aspergillus flavus  isolated from Raphanus sativus, which makes them highly suitable as an alternative for chemical fertilizers to provide resistance to plant pathogenic fungi. The cell wall degrading activities such as protease activity, amylase activity, and plant growth-promoting properties such as Hydrogen cyanide (HCN), Indole acetic acid (IAA), ammonia production of these endophytic bacteria were evaluated. The results show that T. suis  is the most effective strain for radish growth development.


3 Biotech ◽  
2020 ◽  
Vol 10 (7) ◽  
Author(s):  
Mohammad Sayyar Khan ◽  
Junlian Gao ◽  
Mingfang Zhang ◽  
Xuqing Chen ◽  
The Su Moe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document