scholarly journals Zinc Exposure Promotes Commensal-to-Pathogen Transition in Pseudomonas aeruginosa Leading to Mucosal Inflammation and Illness in Mice

2021 ◽  
Vol 22 (24) ◽  
pp. 13321
Author(s):  
Tong Wu ◽  
Annie Gagnon ◽  
Katherine McGourty ◽  
Rebecca DosSantos ◽  
Lucia Chanetsa ◽  
...  

The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) is associated gastrointestinal (GI) inflammation and illness; however, factors motivating commensal-to-pathogen transition are unclear. Excessive zinc intake from supplements is common in humans. Due to the fact that zinc exposure enhances P. aeruginosa colonization in vitro, we hypothesized zinc exposure broadly activates virulence mechanisms, leading to inflammation and illness. P. aeruginosa was treated with excess zinc and growth, expression and secretion of key virulence factors, and biofilm production were determined. Effects on invasion, barrier function, and cytotoxicity were evaluated in Caco-2 cells co-cultured with P. aeruginosa pre-treated with zinc. Effects on colonization, mucosal pathology, inflammation, and illness were evaluated in mice infected with P. aeruginosa pre-treated with zinc. We found the expression and secretion of key virulence factors involved in quorum sensing (QS), motility (type IV pili, flagella), biosurfactants (rhamnolipids), toxins (exotoxin A), zinc homeostasis (CzcR), and biofilm production, were all significantly increased. Zinc exposure significantly increased P. aeruginosa invasion, permeability and cytotoxicity in Caco-2 cells, and enhanced colonization, inflammation, mucosal damage, and illness in mice. Excess zinc exposure has broad effects on key virulence mechanisms promoting commensal-to-pathogen transition of P. aeruginosa and illness in mice, suggesting excess zinc intake may have adverse effects on GI health in humans.

Author(s):  
Ayushi Singh ◽  
Daljeet Chhabra ◽  
Rakhi Gangil ◽  
Rakesh Sharda ◽  
Ravi Sikrodia ◽  
...  

Background: Avian colibacillosis is considered as major cause of morbidity and mortality in poultry. It is a common bacterial disease of poultry and many virulence factors of E. coli are associated with the disease. The current study was aimed to investigate the presence of some virulence factors of E. coli isolated from the cases of colibacillosis.Methods: In present study, total 150 samples (liver, heart, lungs, air sacs and feaces) of chicken exhibiting pathological conditions of colibacillosis were collected from various poultry farms (organized and backyard) situated in and around Mhow and Indore cities. E.coli was isolated and identified from the samples on the basis of cultural characteristics and biochemical test. All E. coli isolates were further subjected to evaluate the presence of virulence factors such as biofilm production, haemolysis, invasiveness and molecular detection of fimH and stx1 gene.Result: Out of these 51.33% of incidence of E. coli was recorded. E. coli O84 and O149 serotypes were found most prevalent. Out of 77 isolates, 46 (59.7%) and 45 (58.4%) were positive for biofilm formation by tube method and modified CRA method, respectively. All E. coli isolates were showing invasiveness in congo red binding assay while none of the isolates was found haemolytic. Molecular detection revealed the presence of fimH (508bp) gene in 33.3% of tested samples while stx1 gene could not be detected in any isolates.


2011 ◽  
Vol 89 (6) ◽  
pp. 419-427 ◽  
Author(s):  
Misagh Alipour ◽  
Abdelwahab Omri ◽  
Zacharias E. Suntres

This study was carried out to examine the antimicrobial activity of the aqueous extract of Panax quinquefolius from North American ginseng (NAGE) root against Pseudomonas aeruginosa . The minimum inhibitory concentrations of reference and clinical isolates of Pseudomonas aeruginosa were measured by a standard agar-dilution method. At subinhibitory NAGE concentrations, the secretion of virulence factors, motility on agar, and adhesion to 96-well microplates were studied on the nonmucoid Pseudomonas aeruginosa O1 strain. At suprainhibitory concentrations, the activity of NAGE against mature biofilm complexes formed in the Calgary Biofilm Device and the Stovall flow cell were assessed. NAGE possessed an antibacterial activity against all the Pseudomonas aeruginosa strains at 1.25%–2.5% w/v. NAGE also significantly attenuated pyocyanin, pyoverdine, and lipase concentrations, stimulated twitching, and attenuated swarming and swimming motility. At 1.25% w/v, NAGE augmented adhesion, and at 5% w/v detached 1-day-old biofilms in microplates. The extract also eradicated 6-day-old mature biofilms (5% w/v), and fluorescence microscopy displayed a reduction of live cells and biofilm complexes compared with nontreated biofilms. These data suggest that the aqueous extract from North American ginseng possesses antimicrobial activities in vitro.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2283
Author(s):  
Sekelwa Cosa ◽  
Jostina R. Rakoma ◽  
Abdullahi A. Yusuf ◽  
Thilivhali E. Tshikalange

Pseudomonas aeruginosa is the causative agent of several life-threatening human infections. Like many other pathogens, P. aeruginosa exhibits quorum sensing (QS) controlled virulence factors such as biofilm during disease progression, complicating treatment with conventional antibiotics. Thus, impeding the pathogen’s QS circuit appears as a promising alternative strategy to overcome pseudomonas infections. In the present study, Calpurnia aurea were evaluated for their antibacterial (minimum inhibitory concentrations (MIC)), anti-quorum sensing/antivirulence (AQS), and antibiofilm potential against P. aeruginosa. AQS and antivirulence (biofilm formation, swimming, and swarming motility) activities of plant extracts were evaluated against Chromobacterium violaceum and P. aeruginosa, respectively. The in vitro AQS potential of the individual compounds were validated using in silico molecular docking. Acetone and ethanolic extracts of C. aurea showed MIC at 1.56 mg/mL. The quantitative violacein inhibition (AQS) assay showed ethyl acetate extracts as the most potent at a concentration of 1 mg/mL. GCMS analysis of C. aurea revealed 17 compounds; four (pentadecanol, dimethyl terephthalate, terephthalic acid, and methyl mannose) showed potential AQS through molecular docking against the CviR protein of C. violaceum. Biofilm of P. aeruginosa was significantly inhibited by ≥60% using 1-mg/mL extract of C. aurea. Confocal laser scanning microscopy correlated the findings of crystal violet assay with the extracts significantly altering the swimming motility. C. aurea extracts reduced the virulence of pseudomonas, albeit in a strain- and extract-specific manner, showing their suitability for the identification of lead compounds with QS inhibitory potential for the control of P. aeruginosa infections.


2021 ◽  
Author(s):  
Qin Chen ◽  
Kelei Zhao ◽  
Heyue Li ◽  
Kanghua Liu ◽  
Jing Li ◽  
...  

Abstract Background: Trueperella pyogenes and Pseudomonas aeruginosa are two important bacterial pathogens closely relating to the occurrence and development of forest musk deer respiratory purulent disease. Although T. pyogenes is the causative agent of the disease, the subsequently invaded P. aeruginosa will predominate the infection by producing a substantial amount of quorum-sensing (QS)-controlled virulence factors, and co-infection of them usually creates serious difficulties for veterinary treatment. In order to find a potential drug that targets both T. pyogenes and P. aeruginosa, the antibacterial and anti-virulence capacities of 55 compounds, which have similar core structure to the signal molecules of P. aeruginosa QS system, were tested in this study. By performing a series of in vitro screening experiments to assess the effects of these compounds.Results: We identified that furazolidone could significantly inhibit the growth of mono-cultured T. pyogenes or in the co-culture with P. aeruginosa. Although the growth of P. aeruginosa could also be moderately inhibited by furazolidone, the results of phenotypic identification and transcriptomic analysis further revealed that furazolidone had remarkable inhibitory effect on the biofilm production, motility, and QS system of P. aeruginosa. Moreover, furazolidone could efficiently protect Caenorhabditis elegans from P. aeruginosa infection under both fast-killing and slow-killing conditions.Conclusions: This study reports the antibacterial and anti-virulence abilities of furazolidone on T. pyogenes and P. aeruginosa, and provides a promising strategy and molecular basis for the development of novel anti-infectious drugs to dealing with forest musk deer purulent disease, or other diseases caused by T. pyogenes and P. aeruginosa co-infection.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Thomas Mawhinney ◽  
Valeri V. Mossine ◽  
Deborah L. Chance ◽  
James K. Waters

2012 ◽  
Vol 6 (06) ◽  
pp. 501-507 ◽  
Author(s):  
Sezgi Senturk ◽  
Seyhan Ulusoy ◽  
Gulgun Bosgelmez-Tinaz ◽  
Aysegul Yagci

Introduction: In the opportunistic pathogen Pseudomonas aeruginosa, the production of several virulence factors depends on quorum sensing (QS) involving N-acylhomoserine lactone signal molecules. In vitro studies have suggested that the QS system is crucial in the pathogenesis of P. aeruginosa. However, it is unclear whether QS systems of P. aeruginosa play the same role during infections. Methodology:  In this study, to explore the contribution of QS systems to the pathogenesis of P. aeruginosa during urinary tract infections, we collected 82 clinical isolates. Detection of N-acyl-homoserine lactones (C12-HSL and C4-HSL) was performed on agar plates employing biosensor strains C. violaceum. Elastase and biofilm production were determined spectrophotometrically. QS genes were detected by PCR and subsequently underwent sequencing. Results and conclusion:  Six isolates were found to be negative in the production of both C12-HSL and C4-HSL and all virulence factors tested.  PCR analysis of these isolates revealed that four isolates contained all four QS genes while one isolate was negative for lasR gene, and one isolate negative for lasI, lasR and rhlR genes. Sequence analyses of these isolates showed that the lasR, lasI, rhlR and rhlI genes had point mutations. The combination of these mutations probably explains their C12-HSL, C4-HSL and virulence factor deficiencies. Results of this study suggest that QS deficient clinical isolates occur and are still capable of causing clinical infections in humans. 


2021 ◽  
Vol 22 (4) ◽  
pp. 1628
Author(s):  
Gianmarco Mangiaterra ◽  
Elisa Carotti ◽  
Salvatore Vaiasicca ◽  
Nicholas Cedraro ◽  
Barbara Citterio ◽  
...  

The occurrence of Pseudomonas aeruginosa (PA) persisters, including viable but non-culturable (VBNC) forms, subpopulations of tolerant cells that can survive high antibiotic doses, is the main reason for PA lung infections failed eradication and recurrence in Cystic Fibrosis (CF) patients, subjected to life-long, cyclic antibiotic treatments. In this paper, we investigated the role of subinhibitory concentrations of different anti-pseudomonas antibiotics in the maintenance of persistent (including VBNC) PA cells in in vitro biofilms. Persisters were firstly selected by exposure to high doses of antibiotics and their abundance over time evaluated, using a combination of cultural, qPCR and flow cytometry assays. Two engineered GFP-producing PA strains were used. The obtained results demonstrated a major involvement of tobramycin and bacterial cell wall-targeting antibiotics in the resilience to starvation of VBNC forms, while the presence of ciprofloxacin and ceftazidime/avibactam lead to their complete loss. Moreover, a positive correlation between tobramycin exposure, biofilm production and c-di-GMP levels was observed. The presented data could allow a deeper understanding of bacterial population dynamics during the treatment of recurrent PA infections and provide a reliable evaluation of the real efficacy of the antibiotic treatments against the bacterial population within the CF lung.


2020 ◽  
Author(s):  
Marie-Sarah FANGOUS ◽  
Philippe Gosset ◽  
Nicolas Galakhoff ◽  
Stéphanie Gouriou ◽  
Charles-Antoine Guilloux ◽  
...  

Abstract Background : Increasing resistance to antibiotics of Pseudomonas aeruginosa leads to therapeutic deadlock and alternative therapies are needed. We aimed to evaluate the effects of Lactobacillus clinical isolates in vivo, through intranasal administration on a murine model of Pseudomonas aeruginosa pneumonia.Results : We screened in vitro 50 pulmonary clinical isolates of Lactobacillus for their ability to decrease the synthesis of two QS dependent-virulence factors (elastase and pyocyanin) produced by Pseudomonas aeruginosa strain PAO1.Two blends of three Lactobacillus isolates were then tested in vivo: one with highly effective anti-PAO1 virulence factors properties (blend named L.rff for L. rhamnosus, two L. fermentum strains), and the second with no properties (blend named L.psb, for L. paracasei, L. salivarius and L. brevis). Each blend was administered intranasally to mice 18h prior to PAO1 pulmonary infection. Animal survival, bacterial loads, cytological analysis, and cytokines secretion in the lungs were evaluated at 6 or 24h post infection with PAO1. Intranasal priming with both lactobacilli blends significantly improved 7-day mice survival from 12% for the control PAO1 group to 71% and 100% for the two groups receiving L.rff and L.psb respectively. No mortality was observed for both control groups receiving either L.rff or L.psb. Additionally, the PAO1 lung clearance was significantly enhanced at 24h. A 2-log and 4-log reduction was observed in the L.rff+PAO1 and L.psb+PAO1 groups respectively, compared to the control PAO1 group. Significant reductions in neutrophil recruitment and proinflammatory cytokine and chemokine secretion were observed after lactobacilli administration compared to saline solution, whereas IL-10 production was increased. Conclusions : These results demonstrate that intranasal priming with lactobacilli acts as a prophylaxis, and avoids fatal complications caused by Pseudomonas aeruginosa pneumonia in mice. These results were independent of in vitro anti-Pseudomonas aeruginosa activity on QS-dependent virulence factors. Further experiments are required to identify the immune mechanism before initiating clinical trials.


Sign in / Sign up

Export Citation Format

Share Document