scholarly journals The Current State of Knowledge about Essential Oil Fumigation for Quality of Crops during Postharvest

2021 ◽  
Vol 22 (24) ◽  
pp. 13351
Author(s):  
Małgorzata Namiota ◽  
Radosław Bonikowski

Prolonging crops’ shelf-life while retaining their high quality is a major issue related to postharvest management. During storage, fruits and vegetables are exposed to microbial attacks, which may cause spoilage. Crop deterioration causes the loss of physical properties and drops in quality and nutritional value. Hence, new techniques to improve the resistance of food products are being explored. One promising technique is fumigation. Essential oils and their constituents, due to their antimicrobial properties, are likely to be used as fumigants, as they are highly volatile, effective in low concentrations, biodegradable, and safe. Papers indicate that some of them can improve their quality by increasing the content of antioxidants. This comprehensive review aims to present the current state of knowledge about the influence of essential oil fumigation on crop quality. It covers antioxidant capacity, the content of some bioactive compounds, physicochemical properties, decay properties, and sensory attributes of fruits and vegetables treated with essential oil vapors. The review indicates that this technique might be an interesting field for further exploration due to the promising results presented in the studies. Moreover, the review presents major objectives for current studies and indicates a lack of recent papers in this field.

2013 ◽  
Vol 59 (4) ◽  
pp. 142-156 ◽  
Author(s):  
Mariola Dreger ◽  
Karolina Wielgus

Abstract Nowadays, safety of chemical preservatives has been questioned by a big number of consumers. Traditionally used preservatives often cause skin irritation and lead to allergenic reactions. Growing demands for more natural and preservative-free cosmetics promoted an idea of the replacement of synthetic preservatives with essential oils (EOs) of antimicrobial properties. The antimicrobial effect of essential oil depends on content, concentration and interactions between the main active compounds. Effective preservatives should be characterized by a broad spectrum of antimicrobial activity at a minimum concentration. Formulations containing both types of preservatives: essential oil and a synthetic one have been tested and proposed as a compromise that allows for reducing concentration of both components due to their synergistic activity. Although most essential oils are regarded as safe, some of them may cause risk of contact allergy or phototoxic reaction. A well balanced risk-benefit assessment of essential oils is one of the great challenges for scientists or health policy authorities. This paper presents current state of knowledge on essential oils focused on their antimicrobial properties, the assessment of their efficacy and safety as cosmetic preservatives.


In recent years, the use of various chemicals before and after harvest has become common to boost shelf life. However, the use of these chemicals has its own drawbacks, as some of them are considered to be harmful to the environment and also unfeasible. The main objective of this study is to use edible herbal coating formulations based on Moringa gum [MG] (Concentration: 1, 2 3, 4 and 5 %) and cinnamon essential oil (1 %) for the enhancement of quality and lifespan of guava kept at room temperature for 15 days by applying two methods of coating; dipping and brushing. The guava was dipped and brushed in MG solution for 2 minutes. Analyses of the guavas were done at every 3 days interval. The treatment C3D (Concentration 3 %; dipping) showed the minimum shrinkage index (13.34 %), Physiological Weight Loss [PWL] (27.09 %), fungal decay (70 %), pH (3.76), Total Soluble Solids (TSS) (11.14 °B), mesophilic microbial count (6.73 log CFU/g) as compared to the other samples. The maximum firmness (190.72 N), Titratable Acidity [TA] (0.28 g/L), antioxidant content (15.58 %) and phenolic content (15.93 mg GAE/g) were also observed in C3D coated guavas. These findings indicate that usage of C3D MG coating was successful in maintaining the physiochemical properties of guava and in preserving the fruit's sensory qualities. Future studies would benefit the industries on the utilization of MG for postharvest management of fruits and vegetables as a healthy alternative to chemical fungicides.


2020 ◽  
pp. 1081-1087
Author(s):  
M.M. Abubakar ◽  
M. Norida ◽  
M.Y. Rafii ◽  
J.J. Nakasha

During the postharvest management of fruits and vegetables, the losses range from 10 to 30% of the entire production. This is due to numerous causes, but the most important reason is infestation by fungi. Many synthetic fungicides are employed for postharvest treatment of fruit and vegetables throughout the world. However, fungicidal residues often represent a significant threat to human health. The current study examined the use of hot water treatments on rock melon fruit. Hot water treatments at 55℃ was arranged into four treatments of different dipping periods of 0 minutes (control), 1 minute, 2 minutes, and 3 minutes. The postharvest hot water treatments on rock melon fruit were found to increase the shelf life up to 21 days by minimizing the weight loss, maintaining firmness, preventing the damage of sucrose, retaining the rind size, maintaining the fruit appearance, and reducing fungal infection. The one-minute dip was more effective than other treatments. The treatment successfully extends the shelf life of rock melon fruit quality for the market until three weeks of storage at 21 ± 1 ℃ compared with the control, which was only stored for one week. The results showed the importance of hot water treatments as an alternative to fungicides or chemical treatments, which have a high risk to the health of consumers. Hot water treatment is economical and easier to access than the chemical treatments.


2018 ◽  
Vol 111 ◽  
pp. 509-523 ◽  
Author(s):  
Anand Prakash ◽  
Revathy Baskaran ◽  
Nithyanand Paramasivam ◽  
Vellingiri Vadivel

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2204 ◽  
Author(s):  
Spyridon A. Petropoulos ◽  
Ângela Fernandes ◽  
Maria Ines Dias ◽  
Carla Pereira ◽  
Ricardo C. Calhelha ◽  
...  

The aim of this report was to study the effect of salinity (control: 2dS/m, S1: 4 dS/m and S2: 6 dS/m) and harvest time (first harvest on 9 May 2018 and second harvest on 19 April 2018) on the growth and the chemical composition of Centaurea raphanina subsp. mixta plants. The plants of the first harvest were used for the plant growth measurements (fresh weight and moisture content of leaves, rosette diameter, number and thickness of leaves), whereas those of the second harvest were not used for these measurements due to the flowering initiation, which made the leaves unmarketable due to their hard texture. The results of our study showed that C. raphanina subsp. mixta plants can be cultivated under mild salinity (S1 treatment) conditions without severe effects on plant growth and yield, since a more severe loss (27.5%) was observed for the S2 treatment. In addition, harvest time proved to be a cost-effective cultivation practice that allows to regulate the quality of the final product, either in edible form (first harvest) or for nutraceutical and pharmaceutical purposes as well as antimicrobial agents in food products. Therefore, the combination of these two agronomic factors showed interesting results in terms of the quality of the final product. In particular, high salinity (S2 treatment) improved the nutritional value by increasing the fat, proteins and carbohydrates contents in the first harvest, as well as the tocopherols and sugars contents (S1 and S2 treatments, respectively) in the second harvest. In addition, salinity and harvest time affected the oxalic acid content which was the lowest for the S2 treatment at the second harvest. Similarly, the richest fatty acid (α-linolenic acid) increased with increasing salinity at the first harvest. Salinity and harvest time also affected the antimicrobial properties, especially against Staphylococcus aureus, Bacillus cereus and Trichoderma viride, where the extracts from the S1 and S2 treatments showed high effectiveness. In contrast, the highest amounts of flavanones (pinocembrin derivatives) were detected in the control treatment (second harvest), which was also reflected to the highest antioxidant activity (TBARS) for the same treatment. In conclusion, C. raphanina subsp. mixta plants seem to be tolerant to medium salinity stress (S1 treatment) since plant growth was not severely impaired, while salinity and harvesting time affected the nutritional value (fat, proteins, and carbohydrates) and the chemical composition (tocopherols, sugars, oxalic acid, fatty acids), as well as the bioactive properties (cytotoxicity and antimicrobial properties) of the final product.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 990
Author(s):  
Annachiara Pirozzi ◽  
Giovanna Ferrari ◽  
Francesco Donsì

The usage of edible coatings (ECs) represents an emerging approach for extending the shelf life of highly perishable foods, such as fresh and fresh-cut fruits and vegetables. This review addresses, in particular, the use of reinforcing agents in film-forming solutions to tailor the physicochemical, mechanical and antimicrobial properties of composite coatings. In this scenario, this review summarizes the available data on the various forms of nanocellulose (NC) typically used in ECs, focusing on the impact of their origin and chemical or physical treatments on their structural properties (morphology and shape, dimension and crystallinity) and their functionality. Moreover, this review also describes the deposition techniques of composite ECs, with details on the food engineering principles in the application methods and formulation optimization. The critical analysis of the recent advances in NC-based ECs contributes to a better understanding of the impact of the incorporation of complex nanoparticles in polymeric matrices on the enhancement of coating properties, as well as on the increase of shelf life and the quality of fruits and vegetables.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1695 ◽  
Author(s):  
Yage Xing ◽  
Wenxiu Li ◽  
Qin Wang ◽  
Xuanlin Li ◽  
Qinglian Xu ◽  
...  

Edible coatings and films (ECF) are employed as matrixes for incorporating antimicrobial nanoparticles (NPs), and then they are applied on the fruits and vegetables to prolong shelf life and enhance storage quality. This paper provides a comprehensive review on the preparation, antimicrobial properties and mechanisms, surface and physical qualities of ECF containing antimicrobial NPs, and its efficient application to vegetables and fruits as well. Following an introduction on the properties of the main edible coating materials, the preparation technologies of ECF with NPs are summarized. The antimicrobial activity of ECF with NPs against the tested microorganism was observed by many researchers. This might be mainly due to the electrostatic interaction between the cationic polymer or free metal ions and the charged cell membrane, the photocatalytic reaction of NPs, the detachment of free metal ion, and partly due to the antimicrobial activity of edible materials. Moreover, their physical, mechanical and releasing properties are discussed in detail, which might be influenced by the concentration of NPs. The preservation potential on the quality of fruits and vegetables indicates that various ECF with NPs might be used as the ideal materials for food application. Following the introduction on these characteristics, an attempt is made to predict future trends in this field.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1240
Author(s):  
Yasir Arafat ◽  
Ammar Altemimi ◽  
Anubhav Pratap-Singh ◽  
Laxmikant S. Badwaik

Residual sweet lime peels after the extraction of essential oil by solvent free microwave extraction were used for developing biodegradable film. Glycerol as a plasticizer, soya lecithin as an emulsifier and sweet lime essential oil (0, 1, 2 and 3%) as an active agent was employed. Developed films were analyzed for their mechanical, barrier and antimicrobial properties. The films (with 3% essential oil) which reported highest antimicrobial property against E. coli (24.24 ± 2.69 mm) were wrapped on fish fillet and stored at the refrigerated condition for 12 days. The quality of fish fillets was evaluated every 4 days and compared with polyethylene wrapped and control fish fillets. The active film wrapped sample showed less surface microbial count (3.28 ± 0.16 log cfu/cm2) compared to polyethylene wrapped sample. The hardness values were increased during storage and cohesiveness and springiness of all wrapped samples decreased from day 0 to day 12.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Behrooz Alizadeh Behbahani ◽  
Fereshteh Falah ◽  
Fahimeh Lavi Arab ◽  
Moones Vasiee ◽  
Farideh Tabatabaee Yazdi

This study examines the chemical constituents, antioxidant potential, antibacterial mechanism, and antiproliferative activity of Cinnamomum zeylanicum bark essential oil. The compositions of the oil were analyzed by GC-MS, and the major constituents were found to be (E)-cinnamaldehyde (71.50%), linalool (7.00%), β-caryophyllene (6.40%), eucalyptol (5.40%), and eugenol (4.60%). C. zeylanicum essential oil contained remarkable levels of phenolic and bioactive compounds with outstanding ability to scavenge free radicals and inhibit β-carotene oxidation. The growth of pathogenic and spoilage bacteria, especially Gram-positive ones (i.e. Listeria innocua, Staphylococcus aureus, and Bacillus cereus), was highly inhibited by the oil, compared to the Gram-negative pairs (i.e. Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi). The cells of L. innocua and E. coli (as the most sensitive and resistant strains to the oil, respectively) treated with C. zeylanicum essential oil were observed by scanning electron microscopy to unravel structural changes. It was observed that the essential oil quickly exerted its antibacterial activity through disrupting cell envelope and facilitating the leakage of intracellular compounds. The essential oil had also a dose-dependent antiproliferative effect on adipose-derived mesenchymal stem cells (AT-MSCs), and the cell proliferation could be induced by low concentrations of the oil. The present study indicated that C. zeylanicum essential oil with remarkable antioxidant and antimicrobial properties could be applied to develop novel natural preservatives for food and medicinal purposes.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Ji Yeon Lee ◽  
Joshua Lee ◽  
Sung Won Ko ◽  
Byeong Cheol Son ◽  
Jun Hee Lee ◽  
...  

Nanofibers made by electrospinning are being applied to an unlimited number of applications. In this paper, we propose the fabrication of antimicrobial functional nanofibers infused with essential oil for packaging applications that can extend the shelf-life of fruits. The morphology of nanofibers with different concentrations of essential oil was characterized by SEM and mechanical enhancement was confirmed via universal testing machine (UTM). The surface chemistry and crystalline of the nanofibers were investigated by FTIR and XRD, respectively. The CO2 reduction study was carried out using a hand-made experimental apparatus and nanofiber hydrophobicity, which can prevent moisture penetration from the outside, was evaluated by contact angle. Antimicrobial properties of the functional nanofibers were estimated by using Gram-negative/positive bacteria. The cytotoxicity of the functional nanofibers was studied using fibroblast cells. Furthermore, this study investigated how long the shelf-life of tomatoes was extended. The nanofibers could serve as a multifunctional packaging, as an emerging technology in agricultural products, and even contribute to a better quality of various distributed agricultural products.


Sign in / Sign up

Export Citation Format

Share Document