scholarly journals Macrophage Polarity and Disease Control

2021 ◽  
Vol 23 (1) ◽  
pp. 144
Author(s):  
Suguru Kadomoto ◽  
Kouji Izumi ◽  
Atsushi Mizokami

Macrophages are present in most human tissues and have very diverse functions. Activated macrophages are usually divided into two phenotypes, M1 macrophages and M2 macrophages, which are altered by various factors such as microorganisms, tissue microenvironment, and cytokine signals. Macrophage polarity is very important for infections, inflammatory diseases, and malignancies; its management can be key in the prevention and treatment of diseases. In this review, we assess the current state of knowledge on macrophage polarity and report on its prospects as a therapeutic target.

2020 ◽  
Vol 12 (45) ◽  
pp. 63-66
Author(s):  
Halim Nagem Filho ◽  
Reinaldo Francisco Maia ◽  
Reinaldo Missaka ◽  
Nasser Hussein Fares

The osseointegration is the stable and functional union between the bone and a titanium surface. A new bone can be found on the surface of the implant about 1 week after its installation; the bone remodeling begins between 6 and 12 weeks and continues throughout life. After the implant insertion, depending on the energy of the surface, the plasma fluid immediately adheres, in close contact with the surface, promoting the adsorption of proteins and inducing the indirect interaction of the cells with the material. Macrophages are cells found in the tissues and originated from bone marrow monocytes. The M1 macrophages orchestrate the phagocytic phase in the inflammatory region and also produce inflammatory cytokines involved with the chronic inflammation and the cleaning of the wound and damaged tissues from bacteria. On the other hand, alternative-activated macrophages (M2) are activated by IL-10, the immune complex. Its main function consists on regulating negatively the inflammation through the secretion of the immunosuppressant IL-10. The M2 macrophages present involvement with the immunosuppression, besides having a low capacity for presenting antigens and high production of cytokines; these can be further divided into M2a, M2b, and M2c, based on the gene expression profile.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1098-1098 ◽  
Author(s):  
Heiko Bruns ◽  
Mario Fabri ◽  
Anna Maurberger ◽  
Shirin Pasemann ◽  
Cornelia Fahrenwaldt ◽  
...  

Abstract Abstract 1098 Macrophages make up the bulk of the leukocyte infiltrate in most solid tumors. These so-called tumor associated macrophages (TAMs) are thought to be recruited by tumor-derived chemokines and converted to a tumor-permissive state. TAMs are called M2, or alternatively-activated macrophages, to distinguish them from M1, or classically-activated macrophages. Of interest, these TAMs are not able to fight the tumor; instead, they play a tumor-supporting role via their ability to promote angiogenesis and metastases. In Burkitt's lymphoma infiltration of the tumor masses by macrophages is a characteristic morphological hallmark, while the phenotype and the relevance of TAMs as part of the stroma are poorly understood. Using a murine model of spontaneous Burkitt's lymphoma (λ-hu-c-myc transgenic mice), we therefore characterized macrophages infiltrating lymphoma masses and show here that infiltrating macrophages display an anti-inflammatory M2-phenotype characterized by the expression of surface markers, such as CD206. In addition, they secrete TGFβ and IL-10, which are known not only to support B-cell growth, but suppress T-cell immunity at the tumor site. In vitro analysis of human macrophages generated from PBMC either by GM-CSF to generate the M1 phenotype, or by M-CSF to obtain the M2 phenotype, revealed that both types display a distinct cytotoxic potential. When incubated together with different Burkitt's lymphoma cells, M2 macrophages did not efficiently lyse lymphoma cells. In contrast, M1 macrophages revealed a strong cytotoxic activity towards lymphoma cells, in a TNF, TRAIL, FasL and NO independent manner, as shown by antibody blocking studies. Investigating this mechanism further, we found that M1 macrophages, in contrast to M2 macrophages, express high levels of the Vitamin D inducible Cathelicidin antimicrobial peptide. Strikingly, we demonstrate that cathelicidin has a cytotoxic effect on lymphoma cells, but not on non-malignant B-cells. Of note, excess supplementation of Vitamin-D increased the cytotoxicity of M2 macrophages against lymphoma cells. We conclude that Vitamin D may therefore point into a therapeutic option to influence a tumor stromal component that greatly impacts on survival and immunogenicity of malignant B-cells. Disclosures: Mackensen: Micromet Inc.: Research Funding.


2014 ◽  
Vol 226 (02) ◽  
Author(s):  
M Barros ◽  
P Segges ◽  
G Vera-Lozada ◽  
R Hassan ◽  
G Niedobitek

2018 ◽  
Vol 22 (2) ◽  
pp. 297-300
Author(s):  
V.V. Nevmerzhitsky ◽  
V.Yu. Ivannik ◽  
V.V. Kazmirchuk ◽  
T.N. Moiseenko ◽  
T.A. Volkov ◽  
...  

The fight against staphylococcal infection, increasing the effectiveness of methods of prevention and treatment of diseases of staphylococcal etiology is of interest to scientists and practitioners, both in Ukraine and around the world. The urgency of this problem is growing rapidly, as there is a tendency to increase the resistance of not only staphylococci, but also other gram-positive bacteria. The spread of methicillin-resistant staphylococci restricts the choice of antibiotics for the treatment of diseases of staphylococcal etiology. Staphylococcus aureus is the most common and dangerous type, which is one of the main factors of purulent-inflammatory lesions of the skin and mucous membranes. As a result of mutations, pathogenic staphylococci acquired resistance to antibacterial drugs. The main disadvantage of modern antibiotics is their non-selectivity. As a result of mutations, pathogenic staphylococci acquired resistance to antibacterial drugs. The main disadvantage of modern antibiotics is their non-selectivity. One of the unique and promising medicinal plants, which contains a rich complex of biologically active substances (BAS), is common hops (Humulus lupulus L.). The complex of BAS (flavonoids, hormones, vitamins, bitter, phenolic compounds, essential oils) causes anti-inflammatory, bactericidal, hyposensitizing and analgesic action of hops. The purpose of this work is to determine the antistaphylococcal activity of the carbon dioxide extract of hops and to justify the development on its basis of new antimicrobial agents for the prevention and treatment of infectious and purulent-inflammatory diseases. The following methods were used: microbiological (method of diffusion into agar (well method)) and mathematical and statistical. The high antimicrobial activity of the carbon dioxide extract of hops has been established for museum test strains of the genus Staphylococcus. The results of the studies testify to the prospects of further study of the bactericidal properties of the extract of hops carbon dioxide with the aim of creating effective antimicrobial agents on its basis for the prevention and treatment of infectious and purulent-inflammatory diseases of staphylococcal etiology.


2020 ◽  
Vol 7 (11) ◽  
pp. 1349-1357 ◽  
Author(s):  
Shuangshuang Xie ◽  
Changxing Qi ◽  
Yulin Duan ◽  
Qianqian Xu ◽  
Yaping Liu ◽  
...  

Cyclooxygenase-2 (COX-2) is a significant therapeutic target of chronic inflammatory diseases.


2008 ◽  
Vol 181 (1) ◽  
pp. 669-679 ◽  
Author(s):  
Lone Skov ◽  
Frank J. Beurskens ◽  
Claus O. C. Zachariae ◽  
Sakari Reitamo ◽  
Jessica Teeling ◽  
...  

2021 ◽  
pp. 239719832110394
Author(s):  
Silvia Bellando-Randone ◽  
Emanuel Della-Torre ◽  
Andra Balanescu

Systemic sclerosis is characterized by widespread fibrosis of the skin and internal organs, vascular impairment, and dysregulation of innate and adaptive immune system. Growing evidence indicates that T-cell proliferation and cytokine secretion play a major role in the initiation of systemic sclerosis, but the role of T helper 17 cells and of interleukin-17 cytokines in the development and progression of the disease remains controversial. In particular, an equally distributed body of literature supports both pro-fibrotic and anti-fibrotic effects of interleukin-17, suggesting a complex and nuanced role of this cytokine in systemic sclerosis pathogenesis that may vary depending on disease stage, target cells in affected organs, and inflammatory milieu. Although interleukin-17 already represents an established therapeutic target for several immune-mediated inflammatory diseases, more robust experimental evidence is required to clarify whether it may become an attractive therapeutic target for systemic sclerosis as well.


Sign in / Sign up

Export Citation Format

Share Document