scholarly journals G9a Knockdown Suppresses Cancer Aggressiveness by Facilitating Smad Protein Phosphorylation through Increasing BMP5 Expression in Luminal A Type Breast Cancer

2022 ◽  
Vol 23 (2) ◽  
pp. 589
Author(s):  
Yunho Jin ◽  
Shinji Park ◽  
Soon-Yong Park ◽  
Chae-Young Lee ◽  
Da-Young Eum ◽  
...  

Epigenetic abnormalities affect tumor progression, as well as gene expression and function. Among the diverse epigenetic modulators, the histone methyltransferase G9a has been focused on due to its role in accelerating tumorigenesis and metastasis. Although epigenetic dysregulation is closely related to tumor progression, reports regarding the relationship between G9a and its possible downstream factors regulating breast tumor growth are scarce. Therefore, we aimed to verify the role of G9a and its presumable downstream regulators during malignant progression of breast cancer. G9a-depleted MCF7 and T47D breast cancer cells exhibited suppressed motility, including migration and invasion, and an improved response to ionizing radiation. To identify the possible key factors underlying these effects, microarray analysis was performed, and a TGF-β superfamily member, BMP5, was selected as a prominent target gene. It was found that BMP5 expression was markedly increased by G9a knockdown. Moreover, reduction in the migration/invasion ability of MCF7 and T47D breast cancer cells was induced by BMP5. Interestingly, a G9a-depletion-mediated increase in BMP5 expression induced the phosphorylation of Smad proteins, which are the intracellular signaling mediators of BMP5. Accordingly, we concluded that the observed antitumor effects may be based on the G9a-depletion-mediated increase in BMP5 expression and the consequent facilitation of Smad protein phosphorylation.

2020 ◽  
Author(s):  
Ying Liu ◽  
Dandan Wang ◽  
Mengxia Lei ◽  
Jiayi Gao ◽  
Yuqing Cui ◽  
...  

Abstract Background γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) is rarely studied in tumor progression. Here, the authors investigated the expression and significance of GABARAP in breast cancer. Method: A large group of clinical samples was assessed to detect GABARAP expression and its associations with clinicopathological features and prognosis. Gain- and loss-of-function experiments in cell lines and mouse xenograft models were performed to elucidate the function and underlying mechanisms of GABARAP-regulated tumor progression. Results We analyzed GABARAP levels in clinical breast cancer samples and cell lines and confirmed that GABARAP was negatively correlated with advanced clinicopathologic features, such as tumor size (P = 0.025) and TNM stage (P = 0.001). Importantly, patients with low GABARAP levels had a poor prognosis (p = 0.0047). Functionally, our data revealed that GABARAP can inhibit proliferation, migration and invasion in vitro and in vivo. Importantly, low levels of GABARAP induced epithelial-mesenchymal transition (EMT), one of the most important mechanisms for the promotion of tumor metastasis, in breast cancer cells. Mechanistically, low levels of GABARAP increased the levels of p-AKT (S473) and p-mTOR (S2448), and a specific AKT pathway inhibitor reversed the downregulation of GABARAP-induced tumor progression. In clinical breast cancer specimens, immunohistochemistry (IHC) revealed that the distribution and intensity of GABARAP expression were negatively correlated with those of matrix metalloproteinase (MMP) 2 (P = 0.0013) and MMP14 (P = 0.019). Conclusions Collectively, these data indicated that GABARAP suppressed the malignant behaviors of breast cancer cells, illuminating that the possible mechanism acts via the AkT/mTOR pathway. Targeting GABARAP may provide a potential diagnosis and treatment strategy for breast cancer.


Author(s):  
Lihua Wang ◽  
Canwei Wang ◽  
Zheying Tao ◽  
Liqian Zhao ◽  
Zheng Zhu ◽  
...  

Abstract Background Breast cancer is the most prevalent cancer among women worldwide. WZ35, an analog of curcumin, has been demonstrated to remarkably improve the pharmacokinetic profiles in vivo compared with curcumin. WZ35 exhibits promising antitumor activity in gastric cancer, HCC, colon cancer. However, antitumor effects of WZ35 in breast cancer and its underlying molecular mechanisms remain unclear. Methods CCK8, Flow cytometry and transwell assays were used to measure cell proliferation, cell cycle arrest, apoptosis, cell migration and invasion. We constructed xenograft mouse model and lung metastasis model to assess the antitumor activities of WZ35 in vivo. To explore the underlying molecular mechanisms of WZ35, we performed a series of overexpression and knockdown experiments. The cellular oxygen consumption rates (OCRs) was measured to assess mitochondrial dysfunction. Results We found that treatment of breast cancer cells with WZ35 exerts stronger anti-tumor activities than curcumin both in vitro and in vivo. Mechanistically, our research showed that WZ35 induced reactive oxygen species (ROS) generation and subsequent YAP mediated JNK activation in breast cancer cells. Abrogation of ROS production markedly attenuated WZ35 induced anti-tumor activities as well as YAP and JNK activation. In addition, ROS mediated YAP and JNK activation induced mitochondrial dysfunction in breast cancer cells. Conclusion Our study showed that novel anti-cancer mechanisms of WZ35 in breast cancer cells and ROS-YAP-JNK pathway might be a potential therapeutic target for the treatment of breast cancer patients.


2020 ◽  
Author(s):  
Ying Liu ◽  
Dandan Wang ◽  
Mengxia Lei ◽  
Jiayi Gao ◽  
Yuqing Cui ◽  
...  

Abstract Background: Recent studies document that γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) plays an important role in cancer autophagy. However, little is known about its role in tumor invasion, migration and metastasis. Here, the authors investigated the expression and significance of GABARAP in breast cancer. Method: A large group of clinical samples was assessed to detect GABARAP expression and its associations with clinicopathological features and prognosis. Gain- and loss-of-function experiments in cell lines and mouse xenograft models were performed to elucidate the function and underlying mechanisms of GABARAP-regulated tumor progression. Results: We analyzed GABARAP levels in clinical breast cancer samples and cell lines and confirmed that GABARAP was negatively correlated with advanced clinicopathologic features, such as tumor size (P=0.025) and TNM stage (P=0.001). Importantly, patients with low GABARAP levels had a poor prognosis (p = 0.0047). Functionally, our data revealed that GABARAP can inhibit proliferation, migration and invasion in vitro and in vivo. Importantly, low levels of GABARAP induced epithelial-mesenchymal transition (EMT), one of the most important mechanisms for the promotion of tumor metastasis, in breast cancer cells. Mechanistically, low levels of GABARAP increased the levels of p-AKT (S473) and p-mTOR (S2448), and a specific AKT pathway inhibitor reversed the downregulation of GABARAP-induced tumor progression. In clinical breast cancer specimens, immunohistochemistry (IHC) revealed that the distribution and intensity of GABARAP expression were negatively correlated with those of matrix metalloproteinase (MMP) 2 (P=0.0013) and MMP14 (P=0.019). Conclusions: Collectively, these data indicated that GABARAP suppressed the malignant behaviors of breast cancer cells, illuminating that the possible mechanism acts via the AkT/mTOR pathway. Targeting GABARAP may provide a potential diagnosis and treatment strategy for breast cancer.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 676 ◽  
Author(s):  
Rodrigo A. Acuña ◽  
Manuel Varas-Godoy ◽  
Viviana M. Berthoud ◽  
Ivan E. Alfaro ◽  
Mauricio A. Retamal

Under normal conditions, almost all cell types communicate with their neighboring cells through gap junction channels (GJC), facilitating cellular and tissue homeostasis. A GJC is formed by the interaction of two hemichannels; each one of these hemichannels in turn is formed by six subunits of transmembrane proteins called connexins (Cx). For many years, it was believed that the loss of GJC-mediated intercellular communication was a hallmark in cancer development. However, nowadays this paradigm is changing. The connexin 46 (Cx46), which is almost exclusively expressed in the eye lens, is upregulated in human breast cancer, and is correlated with tumor growth in a Xenograft mouse model. On the other hand, extracellular vesicles (EVs) have an important role in long-distance communication under physiological conditions. In the last decade, EVs also have been recognized as key players in cancer aggressiveness. The aim of this work was to explore the involvement of Cx46 in EV-mediated intercellular communication. Here, we demonstrated for the first time, that Cx46 is contained in EVs released from breast cancer cells overexpressing Cx46 (EVs-Cx46). This EV-Cx46 facilitates the interaction between EVs and the recipient cell resulting in an increase in their migration and invasion properties. Our results suggest that EV-Cx46 could be a marker of cancer malignancy and open the possibility to consider Cx46 as a new therapeutic target in cancer treatment.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1011 ◽  
Author(s):  
Javier Menéndez-Menéndez ◽  
Francisco Hermida-Prado ◽  
Rocío Granda-Díaz ◽  
Alicia González ◽  
Juana María García-Pedrero ◽  
...  

Melatonin mitigates cancer initiation, progression and metastasis through inhibition of both the synthesis of estrogens and the transcriptional activity of the estradiol-ER (Estrogen receptor) complex in the estrogen-dependent breast cancer cell line MCF-7. Moreover, melatonin improves the sensitivity of MCF-7 to chemotherapeutic agents and protects against their side effects. It has been described that melatonin potentiates the anti-proliferative effects of doxorubicin; however, the molecular changes involving gene expression and the activation/inhibition of intracellular signaling pathways remain largely unknown. Here we found that melatonin enhanced the anti-proliferative effect of doxorubicin in MCF-7 but not in MDA-MB-231 cells. Strikingly, doxorubicin treatment induced cell migration and invasion, and melatonin effectively counteracted these effects in MCF-7 but not in estrogen-independent MDA-MB-231 cells. Importantly, we describe for the first time the ability of melatonin to downregulate TWIST1 (Twist-related protein 1) in estrogen-dependent but not in estrogen-independent breast cancer cells. Combined with doxorubicin, melatonin inhibited the activation of p70S6K and modulated the expression of breast cancer, angiogenesis and clock genes. Moreover, melatonin regulates the levels of TWIST1-related microRNAs, such as miR-10a, miR-10b and miR-34a. Since TWIST1 plays a pivotal role in the epithelial to mesenchymal transition, acquisition of metastatic phenotype and angiogenesis, our results suggest that inhibition of TWIST1 by melatonin might be a crucial mechanism of overcoming resistance and improving the oncostatic potential of doxorubicin in estrogen-dependent breast cancer cells.


2020 ◽  
Author(s):  
Ying Liu ◽  
Dandan Wang ◽  
Mengxia Lei ◽  
Jiayi Gao ◽  
Yuqing Cui ◽  
...  

Abstract Background Recent studies document that γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) plays an important role in cancer autophagy. However, little is known about its role in tumor invasion, migration and metastasis. Here, the authors investigated the expression and significance of GABARAP in breast cancer. Method: A large group of clinical samples was assessed to detect GABARAP expression and its associations with clinicopathological features and prognosis. Gain- and loss-of-function experiments in cell lines and mouse xenograft models were performed to elucidate the function and underlying mechanisms of GABARAP-regulated tumor progression. Results We analyzed GABARAP levels in clinical breast cancer samples and cell lines and confirmed that GABARAP was negatively correlated with advanced clinicopathologic features, such as tumor size (P = 0.025) and TNM stage (P = 0.001). Importantly, patients with low GABARAP levels had a poor prognosis (p = 0.0047). Functionally, our data revealed that GABARAP can inhibit proliferation, migration and invasion in vitro and in vivo. Importantly, low levels of GABARAP induced epithelial-mesenchymal transition (EMT), one of the most important mechanisms for the promotion of tumor metastasis, in breast cancer cells. Mechanistically, low levels of GABARAP increased the levels of p-AKT (S473) and p-mTOR (S2448), and a specific AKT pathway inhibitor reversed the downregulation of GABARAP-induced tumor progression. In clinical breast cancer specimens, immunohistochemistry (IHC) revealed that the distribution and intensity of GABARAP expression were negatively correlated with those of matrix metalloproteinase (MMP) 2 (P = 0.0013) and MMP14 (P = 0.019). Conclusions Collectively, these data indicated that GABARAP suppressed the malignant behaviors of breast cancer cells, illuminating that the possible mechanism acts via the AkT/mTOR pathway. Targeting GABARAP may provide a potential diagnosis and treatment strategy for breast cancer.


2020 ◽  
Vol 11 (1) ◽  
pp. 260-271 ◽  
Author(s):  
Song Hu ◽  
Manlin Cao ◽  
Yiqing He ◽  
Guoliang Zhang ◽  
Yiwen Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


Sign in / Sign up

Export Citation Format

Share Document