scholarly journals Severe Natural Outbreak of Cryptocaryon irritans in Gilthead Seabream Produces Leukocyte Mobilization and Innate Immunity at the Gill Tissue

2022 ◽  
Vol 23 (2) ◽  
pp. 937
Author(s):  
Laura Cervera ◽  
Carmen González-Fernández ◽  
Marta Arizcun ◽  
Alberto Cuesta ◽  
Elena Chaves-Pozo

The protozoan parasite Cryptocaryon irritans causes marine white spot disease in a wide range of fish hosts, including gilthead seabream, a very sensitive species with great economic importance in the Mediterranean area. Thus, we aimed to evaluate the immunity of gilthead seabream after a severe natural outbreak of C. irritans. Morphological alterations and immune cell appearance in the gills were studied by light microscopy and immunohistochemical staining. The expression of several immune-related genes in the gills and head kidney were studied by qPCR, including inflammatory and immune cell markers, antimicrobial peptides (AMP), and cell-mediated cytotoxicity (CMC) molecules. Serum humoral innate immune activities were also assayed. Fish mortality reached 100% 8 days after the appearance of the C. irritans episode. Gill filaments were engrossed and packed without any space between filaments and included parasites and large numbers of undifferentiated and immune cells, namely acidophilic granulocytes. Our data suggest leukocyte mobilization from the head kidney, while the gills show the up-regulated transcription of inflammatory, AMPs, and CMC-related molecules. Meanwhile, only serum bactericidal activity was increased upon infection. A potent local innate immune response in the gills, probably orchestrated by AMPs and CMC, is triggered by a severe natural outbreak of C. irritans.

Author(s):  
Stefano Persano ◽  
Francesco Vicini ◽  
Alessandro Poggi ◽  
Jordi Leonardo Castrillo Fernandez ◽  
Giusy Maria Rita Rizzo ◽  
...  

Cancer immunotherapies are gaining a large popularity and many of them have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown a clinically relevant success in glioblastoma (GBM), principally due to the brain’s “immune-privileged” status and the peculiar tumor microenvironment (TME) of GBM featured by lack of presence of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms. Emerging evidence has highlighted the key role played by innate immune cells in immunosurveillance and in initiating and driving immune responses against GBM. Immunogenic cell death (ICD) is a promising approach to elicit direct activation of the innate immune system by inducing in target cancer cells the expression of molecular signatures recognized through a repertoire of innate immune cell pattern recognition receptors (PRRs) by effector innate immune cells. Herein, we explored local mild thermal treatment, generated by using ultrasmall (size ~ 17 nm) cubic-shaped iron oxide nanoparticles exposed to an external alternating magnetic field (AMF), to induce ICD in U87 glioblastoma cells. In accordance with what has been previously observed with other types of tumors, we found that mild hyperthermia modulates the immunological profile of U87 glioblastoma cells by inducing stress-associated signals leading to enhanced phagocytosis and killing of U87 cells by macrophages. Finally, we demonstrated that mild magnetic hyperthermia has a modulatory effect on the expression of inhibitory and activating NK cell ligands on target cells. Interestingly, alteration in the expression of NK ligands, caused by mild hyperthermia treatment, in U87 glioblastoma cells, increased their susceptibility to NK cell killing and NK cell functionality. The overall findings demonstrate that mild magnetic hyperthermia stimulates ICD and sensitizes GBM cells to NK-mediated killing by inducing the upregulation of specific stress ligands, providing a novel immunotherapeutic approach for GBM treatment, with potential to synergize with existing NK cell-based therapies thus improving their therapeutic outcomes.


Parasitology ◽  
2005 ◽  
Vol 132 (1) ◽  
pp. 95-104 ◽  
Author(s):  
A. CUESTA ◽  
P. MUÑOZ ◽  
A. RODRÍGUEZ ◽  
I. SALINAS ◽  
A. SITJÀ-BOBADILLA ◽  
...  

The humoral innate immune response of gilthead seabream (Sparus aurataL.) against the myxozoanEnteromyxum leeihas been studied. At 10, 22, 38, 52 and 108 days of cohabitation fish were sampled to examine gut histology and to determine serum innate immune parameters and the mRNA expression of pro-inflammatory cytokines (IL-1β and TNFα) in head-kidney. The parasite was successfully transmitted to 45% of the recipient fish and prevalence reached a maximum (62·5%) at the last sampling time (108 days). Recipient fish started to die after 74 days of cohabitation. In general, alternative complement activity was higher whereas the peroxidase level was lower in recipient fish than in controls. Moreover, IL-1β mRNA expression increased while the TNFα gene expression decreased in recipient fish. These data demonstrate the involvement of complement activity in the defence mechanisms of the gilthead seabream against the myxosporeanE. leei. Within the recipient fish group, few differences were observed in the studied immune parameters betweenE. leei-parasitized and non-parasitized recipient fish. Parasitological and immunological implications ofE. leeiinfections in Mediterranean fish farms are discussed.


2020 ◽  
Vol 21 (24) ◽  
pp. 9769
Author(s):  
Saaya Koike ◽  
Kenshi Yamasaki

The epidermis is located in the outermost layer of the living body and is the place where external stimuli such as ultraviolet rays and microorganisms first come into contact. Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage. Pigmentary disorders are observed in diseases associated with immunodeficiency such as Griscelli syndrome, indicating molecular sharing between immune systems and the machineries of pigment formation. Melanocytes express functional toll-like receptors (TLRs), and innate immune stimulation via TLRs affects melanin synthesis and melanosome transport to modulate skin pigmentation. TLR2 enhances melanogenetic gene expression to augment melanogenesis. In contrast, TLR3 increases melanosome transport to transfer to keratinocytes through Rab27A, the responsible molecule of Griscelli syndrome. TLR4 and TLR9 enhance tyrosinase expression and melanogenesis through p38 MAPK (mitogen-activated protein kinase) and NFκB signaling pathway, respectively. TLR7 suppresses microphthalmia-associated transcription factor (MITF), and MITF reduction leads to melanocyte apoptosis. Accumulating knowledge of the TLRs function of melanocytes has enlightened the link between melanogenesis and innate immune system.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 753
Author(s):  
Andre Barany ◽  
Juan Fuentes ◽  
Gonzalo Martínez-Rodríguez ◽  
Juan Miguel Mancera

Several studies in fish have shown that aflatoxin B1 (AFB1) causes a disparity of species-dependent physiological disorders without compromising survival. We studied the effect of dietary administration of AFB1 (2 mg AFB1 kg−1 diet) in gilthead seabream (Sparus aurata) juveniles in combination with a challenge by stocking density (4 vs. 40 g L−1). The experimental period duration was ten days, and the diet with AFB1 was administered to the fish for 85 days prior to the stocking density challenge. Our results indicated an alteration in the carbohydrate and lipid metabolites mobilization in the AFB1 fed group, which was intensified at high stocking density (HSD). The CT group at HSD increased plasma cortisol levels, as expected, whereas the AFB1-HSD group did not. The star mRNA expression, an enzyme involved in cortisol synthesis in the head kidney, presented a ninefold increase in the AFB1 group at low stocking density (LSD) compared to the CT-LSD group. Adenohypophyseal gh mRNA expression increased in the AFB1-HSD but not in the CT-HSD group. Overall, these results confirmed that chronic AFB1 dietary exposure alters the adequate endocrinological physiological cascade response in S. aurata, compromising the expected stress response to an additional stressor, such as overcrowding.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1413
Author(s):  
Sofia Ojasalo ◽  
Petteri Piskunen ◽  
Boxuan Shen ◽  
Mauri A. Kostiainen ◽  
Veikko Linko

Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as “structured” genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.


Author(s):  
Lorena P. Suarez-Kelly ◽  
Steven H. Sun ◽  
Casey Ren ◽  
Isaac V. Rampersaud ◽  
David Albertson ◽  
...  

2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Luis A. Vega ◽  
Kayla M. Valdes ◽  
Ganesh S. Sundar ◽  
Ashton T. Belew ◽  
Emrul Islam ◽  
...  

ABSTRACTAs an exclusively human pathogen,Streptococcus pyogenes(the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene,cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators ofStreptococcus mutans(MetR),Streptococcus iniae(CpsY), andStreptococcus agalactiae(MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survivalin vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest thein vitrophenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE,speB,spd,nga[spn],prtS[SpyCEP], andsse) and cell surface-associated factors of GAS (emm1,mur1.2,sibA[cdhA], andM5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.


2015 ◽  
Vol 9 (4) ◽  
pp. 974-985 ◽  
Author(s):  
R Brauer ◽  
J Tureckova ◽  
I Kanchev ◽  
M Khoylou ◽  
J Skarda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document