scholarly journals Effect of a Recirculating Type Casing Treatment on a Highly Loaded Axial Compressor Rotor

Author(s):  
Motoyuki Kawase ◽  
Aldo Rona

The tip leakage flow over the blades of an axial compressor rotor adversely affects the axial rotor efficiency and can determine the onset of tip leakage stall. The performance of a new casing treatment concept in the shape of an axisymmetric recirculation channel is explored by steady Reynolds-Averaged Navier–Stokes (RANS) realizable k-ε modelling on the NASA Rotor 37 test case. The modelling exposed a number of attractive features. The casing treatment increased the stall margin at no penalty to the rotor isentropic efficiency over the rotor operating line. A recirculation in the casing channel self-activated and self-adjusted with the rotor loading to provide more passive flow control at higher rotor loading conditions. The nozzle-shaped recirculation channel outflow opposed the tip leakage jet, re-located the casing surface flow interface further downstream, and reduced the rotor blade tip incidence angle. This combination of features makes the new casing treatment particularly attractive for applications to high thrust-to-weight ratio engines, typical of high-performance jet aircraft.

Author(s):  
Yoojun Hwang ◽  
Shin-Hyoung Kang

A low speed axial compressor with casing treatment of axial slots was numerically investigated. Time-accurate numerical calculations were performed to simulate unsteady flow in the rotor tip region and the effects of casing treatment on the flow. Since the compressor rotor had a large tip clearance, it was found that the tip leakage flow had an inherent unsteady feature that was not associated with rotor rotation. The unsteadiness of the tip leakage flow was induced by changes in the blade loading due to the pressure distribution formed by the tip leakage flow. This characteristic is called rotating instability or self-induced unsteadiness. The frequency of the flow oscillation was found to decrease as the flow rate was reduced. On the other hand, as expected, the operating range was improved by casing treatment, as shown by calculations in good agreement with the experimentally measured data. The unsteadiness of the tip leakage flow was alleviated by the casing treatment. The interaction between the flow in the tip region and the re-circulated flow through the axial slots was observed in detail. The removal and injection of flow through the axial slots were responsible not only for the extension of the operating range but also for the alleviation of the unsteadiness. Analyses of instantaneous flow fields explained the mechanism of the interaction between the casing treatment and the unsteady oscillation of the tip leakage flow. Furthermore, the effects of changes in the amount of re-circulation and the location of the removal and injection flow on the unsteadiness of the tip leakage flow were examined.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


1986 ◽  
Vol 108 (1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Inoue ◽  
M. Kuroumaru ◽  
M. Fukuhara

Performance testing and detailed flow measurements were made in an axial compressor rotor with various tip clearances. The experiments were conducted on the condition of the same incidence angle at midspan. Thus, the effect of tip clearance distinguished from that of incidence angle was investigated on the overall performance, work-done factor, blockage factor, and increases in displacement, momentum, and blade-force-deficit thicknesses of the casing wall boundary layer, The phase-locked flow patterns obtained by the multisampling technique show clear evidence of a leakage vortex core behind the rotor. Behavior of the leakage vortex was clarified for various tip clearances by examining loci of the vortex center, decay characteristics of the vorticity at the center, and the total amount of vorticity shed from the blade tip. These results were compared with the leakage vortex model presented by Lakshminarayana.


Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 88
Author(s):  
Motoyuki Kawase ◽  
Aldo Rona

A proof of concept is provided by computational fluid dynamic simulations of a new recirculating type casing treatment. This treatment aims at extending the stable operating range of highly loaded axial compressors, so to improve the safety of sorties of high-speed, high-performance aircraft powered by high specific thrust engines. This casing treatment, featuring an axisymmetric recirculation channel, is evaluated on the NASA rotor 37 test case by steady and unsteady Reynolds Averaged Navier Stokes (RANS) simulations, using the realizable k-ε model. Flow blockage at the recirculation channel outlet was mitigated by chamfering the exit of the recirculation channel inner wall. The channel axial location from the rotor blade tip leading edge was optimized parametrically over the range −4.6% to 47.6% of the rotor tip axial chord c z . Locating the channel at 18.2% c z provided the best stall margin gain of approximately 5.5% compared to the untreated rotor. No rotor adiabatic efficiency was lost by the application of this casing treatment. The investigation into the flow structure with the recirculating channel gave a good insight into how the new casing treatment generates this benefit. The combination of stall margin gain at no rotor adiabatic efficiency loss makes this design attractive for applications to high-speed gas turbine engines.


2014 ◽  
Vol 30 (3) ◽  
pp. 307-313 ◽  
Author(s):  
R. Taghavi-Zenou ◽  
S. Abbasi ◽  
S. Eslami

ABSTRACTThis paper deals with tip leakage flow structure in subsonic axial compressor rotor blades row under different operating conditions. Analyses are based on flow simulation utilizing computational fluid dynamic technique. Three different circumstances at near stall condition are considered in this respect. Tip leakage flow frequency spectrum was studied through surveying instantaneous static pressure signals imposed on blades surfaces. Results at the highest flow rate, close to the stall condition, showed that the tip vortex flow fluctuates with a frequency close to the blade passing frequency. In addition, pressure signals remained unchanged with time. Moreover, equal pressure fluctuations at different passages guaranteed no peripheral disturbances. Tip leakage flow frequency decreased with reduction of the mass flow rate and its structure was changing with time. Spillage of the tip leakage flow from the blade leading edge occurred without any backflow in the trailing edge region. Consequently, various flow structures were observed within every passage between two adjacent blades. Further decrease in the mass flow rate provided conditions where the spilled flow ahead of the blade leading edge together with trailing edge backflow caused spike stall to occur. This latter phenomenon was accompanied by lower frequencies and higher amplitudes of the pressure signals. Further revolution of the rotor blade row caused the spike stall to eventuate to larger stall cells, which may be led to fully developed rotating stall.


Author(s):  
Bhaskar Roy ◽  
A. M. Pradeep ◽  
A. Suzith ◽  
Dinesh Bhatia ◽  
Aditya Mulmule

The present study involves simulation of a single compressor rotor with a high hub-to-tip ratio blade. The study includes the effect of variation of tip gap, of tip shapes and of inlet axial velocity profiles, with inflows simulated similar to that of a typical rear stage environment of a multi-stage axial compressor. Numerical studies were carried out on a baseline rotor blade (without sweep or dihedral) and then on blades with sweep and dihedral applied at the tip region of the rotor. Simulation of these part-span sweep and dihedral shapes are done to study their effects on blade tip leakage flow. Results show that sweep and dihedral, in some cases, produce favorable tip flows, improving blade aerodynamics. Positive dihedral caused weakening of tip leakage vortex at design point as well as at peak pressure point. Negative dihedral may help postpone stall at the high pressure, low flow operation. Backward sweep weakened tip vortex at the design point. Contrary to some of the studies reported earlier forward sweep, when applied at the tip region, showed performance deterioration over the most of the operating range of the high hub-to-tip rotor.


Author(s):  
Guang Wang ◽  
Wuli Chu

Abstract In order to weaken the negative effect of tip leakage flow and improve the tip flow condition, this paper introduces synthetic jet into the flow control field of axial compressor, and proposes a method of active flow control by arranging synthetic jet at the tip. A high-speed axial compressor rotor of the author’s research group is taken as the numerical simulation object. On the basis of keeping geometric parameters of the synthetic jet actuator unchanged, this paper studies the influence of applying tip synthetic jet on aerodynamic performance of the compressor rotor at three axial positions of −10%Ca, 0%Ca and 21.35%Ca respectively. The results show that when tip synthetic jet is in the above three positions, comprehensive stability margin of the compressor rotor increases by 2.62%, 3.77% and 12.46% respectively, and efficiency near stall point increases by 0.22%, 0.25 and 0.47% respectively. This shows that when tip synthetic jet is far away from blade, the aerodynamic performance improvement of the compressor rotor is limited, and when tip synthetic jet is just above the leading edge, the effect of expanding stability is the best and the efficiency is the most improved. The mechanism of tip synthetic jet can increase the stability of the compressor rotor is that when the actuator is in the blowing stage, it can blow the low-speed air flow of blade top to downstream, and when the actuator is in the suction stage, it can suck the low-speed air flow of blade top into slot, so as to alleviate the top blockage and realize the stability expansion. The mechanism of tip synthetic jet can improve the efficiency of compressor rotor is that the blowing and suction of actuator weaken the intensity of tip leakage flow, reduce the size of vortex core and also reduce the flow loss of the compressor rotor correspondingly.


Sign in / Sign up

Export Citation Format

Share Document