scholarly journals Convolutional Support Vector Models: Prediction of Coronavirus Disease Using Chest X-rays

Information ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 548
Author(s):  
Mateus Maia ◽  
Jonatha S. Pimentel ◽  
Ivalbert S. Pereira ◽  
João Gondim ◽  
Marcos E. Barreto ◽  
...  

The disease caused by the new coronavirus (COVID-19) has been plaguing the world for months and the number of cases are growing more rapidly as the days go by. Therefore, finding a way to identify who has the causative virus is impressive, in order to find a way to stop its proliferation. In this paper, a complete and applied study of convolutional support machines will be presented to classify patients infected with COVID-19 using X-ray data and comparing them with traditional convolutional neural network (CNN). Based on the fitted models, it was possible to observe that the convolutional support vector machine with the polynomial kernel (CSVMPol) has a better predictive performance. In addition to the results obtained based on real images, the behavior of the models studied was observed through simulated images, where it was possible to observe the advantages of support vector machine (SVM) models.

Teknika ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 96-103
Author(s):  
Mohammad Farid Naufal ◽  
Selvia Ferdiana Kusuma ◽  
Kevin Christian Tanus ◽  
Raynaldy Valentino Sukiwun ◽  
Joseph Kristiano ◽  
...  

Kondisi pandemi global Covid-19 yang muncul diakhir tahun 2019 telah menjadi permasalahan utama seluruh negara di dunia. Covid-19 merupakan virus yang menyerang organ paru-paru dan dapat mengakibatkan kematian. Pasien Covid-19 banyak yang telah dirawat di rumah sakit sehingga terdapat data citra chest X-ray paru-paru pasien yang terjangkit Covid-19. Saat ini sudah banyak peneltian yang melakukan klasifikasi citra chest X-ray menggunakan Convolutional Neural Network (CNN) untuk membedakan paru-paru sehat, terinfeksi covid-19, dan penyakit paru-paru lainnya, namun belum ada penelitian yang mencoba membandingkan performa algoritma CNN dan machine learning klasik seperti Support Vector Machine (SVM), dan K-Nearest Neighbor (KNN) untuk mengetahui gap performa dan waktu eksekusi yang dibutuhkan. Penelitian ini bertujuan untuk membandingkan performa dan waktu eksekusi algoritma klasifikasi K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan CNN  untuk mendeteksi Covid-19 berdasarkan citra chest X-Ray. Berdasarkan hasil pengujian menggunakan 5 Cross Validation, CNN merupakan algoritma yang memiliki rata-rata performa terbaik yaitu akurasi 0,9591, precision 0,9592, recall 0,9591, dan F1 Score 0,959 dengan waktu eksekusi rata-rata sebesar 3102,562 detik.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242899
Author(s):  
Musatafa Abbas Abbood Albadr ◽  
Sabrina Tiun ◽  
Masri Ayob ◽  
Fahad Taha AL-Dhief ◽  
Khairuddin Omar ◽  
...  

The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.


2020 ◽  
Vol 1 (1) ◽  
pp. 21-32
Author(s):  
Risha Ambar Wati ◽  
Hafiz Irsyad ◽  
Muhammad Ezar Al Rivan

Pneumonia is a type of lung disease caused by bacteria, viruses, fungi, or parasites. One way to find out pneumonia is by x-ray. X-rays will be analyzed to determine whether there is pneumonia or not. This study aims to classify the x-ray results whether there is pneumonia or not on the x-ray results. The classification method used in this study were Support Vector Machine (SVM) and Gray Level Co-Occurrence (GLCM) for the extraction method. There are several stages before classification, namely cropping, resizing, contrast stretching, and thresholding then extracted using GLCM and classified using SVM. The results showed that the best accuracy of 62.66%.


2021 ◽  
Vol 9 (B) ◽  
pp. 1283-1289
Author(s):  
Jane Aurelia ◽  
Zuherman Rustam

BACKGROUND: Cancer is a major health problem not only in Indonesia but also throughout the world. Cancer is the growth and spread of abnormal cells that have distinctive characteristics, that if can no longer be controlled will usually cause death. The number of deaths due to cancer is generally caused by late diagnosis and inappropriate treatment. To reduce mortality from cancer, it is necessary to strive for early detection and monitoring of cancer in patients undergoing therapy. Convolutional neural networks (CNNs) as one of machine learning methods are designed to produce or process data from two dimensions that have a network tier and many applications carried out in the image. Moreover, support vector machines (SVMs) as a hypothetical space in the form of linear functions feature have high dimensions and trained algorithm based on optimization theory. AIM: In connection with the above, this paper discusses the role of the machine learning technique named a hybrid CNN-SVM. METHODS: The proposed method is used in the detection and monitoring of cancers by determining the classification of cancers in X-ray computed tomography (CT) patients’ images. Several types of cancer that used for determination in detection and monitoring of cancers diagnosis are also discussed in this paper, such as lung, liver, and breast cancer. RESULTS: From the discussion, the results show that the combining model of hybrid CNN-SVM has the best performance with 99.17% accuracy value. CONCLUSION: Therefore, it can be concluded that machine learning plays a very important role in the detection and management of cancer treatment through the determination of classification of cancers in X-ray CT patients’ images. As the proposed method can detect cancer cells with an effective mechanism of action so can has the potential to inhibit in the future studies with more extensive data materials and various diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed Elsharkawy ◽  
Ahmed Sharafeldeen ◽  
Fatma Taher ◽  
Ahmed Shalaby ◽  
Ahmed Soliman ◽  
...  

AbstractThe primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given a training set of X-ray images with affected lung regions labeled. An X-ray input to the system undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary of the lung, using either a fully-automated segmentation routine or manual delineation provided by the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as the radius increased. The overall CAD system combined the estimated Gibbs energy information from all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees all produced inferior results compared to the proposed neural network used in this CAD system. The experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians to determine which patients might require more intensive clinical care, such a mechanical respiratory support.


2021 ◽  
Vol 1 (1) ◽  
pp. 31
Author(s):  
Kristiawan Nugroho

The Covid-19 pandemic has occurred for a year on earth. Various attempts have been made to overcome this pandemic, especially in making various types of vaccines developed around the world. The level of vaccine effectiveness in dealing with Covid-19 is one of the questions that is often asked by the public. This research is an attempt to classify the names of vaccines that have been used in various nations by using one of the robust machine learning methods, namely the Neural Network. The results showed that the Neural Network method provides the best accuracy, which is 99.9% higher than the Random Forest and Support Vector Machine(SVM) methods.


Author(s):  
Danial Sharifrazi ◽  
Roohallah Alizadehsani ◽  
Mohamad Roshanzamir ◽  
Javad Hassannataj Joloudari ◽  
Afshin Shoeibi ◽  
...  

Bones are protecting many organs in the human body such as the lungs, brain, heart and other internal organs. Bone fracture is a common problem in human beings and may occur due to the high pressure that is applied to the bones as a result of an accident or any other reasons. X-ray (radiograph) is the noninvasive medical experimentthat helps doctors diagnose and present medical conditions. X-rays represent the oldest and most often used kind of medical imagery. Medical image processing attempts to enhance the bone fracture diagnosis processes by creating an automated system that can go through a large database of the X-ray images and identify the required diagnosis faster and with high accuracy than the regular diagnosis processes. In this paper, the lower leg bone (Tibia) fracture is studied and many novel features are extracted using various image processing techniques. The purpose of this research is to use new investigated features and classify the X-ray bone images as a fractured and non-fractured bone and make the system more applicable and closer to the user using the Graphical User Interface (GUI). The Tibia bone fracture detection system was developed in three main steps: the preprocessing step, feature extraction using wavelet analysis, gradient analysis, principal components (PCA), and edge detection methods and classification using Support Vector Machine (SVM). The results were produced using four possible outcomes from the confusion matrix which are TP, TN, FP, and FN. The classification process was repeated using different feature groups at a time and the resultant accuracies were ranged between 70%-80%.


2021 ◽  
Vol 12 (3) ◽  
pp. 011-019
Author(s):  
Haris Uddin Sharif ◽  
Shaamim Udding Ahmed

At the end of 2019, a new kind of coronavirus (SARS-CoV-2) suffered worldwide and has become the pandemic coronavirus (COVID-19). The outbreak of this virus let to crisis around the world and kills millions of people globally. On March 2020, WHO (World Health Organization) declared it as pandemic disease. The first symptom of this virus is identical to flue and it destroys the human respiratory system. For the identification of this disease, the first key step is the screening of infected patients. The easiest and most popular approach for screening of the COVID-19 patients is chest X-ray images. In this study, our aim to automatically identify the COVID-19 and Pneumonia patients by the X-ray image of infected patient. To identify COVID19 and Pneumonia disease, the convolution Neural Network was training on publicly available dataset on GitHub and Kaggle. The model showed the 98% and 96% training accuracy for three and four classes respectively. The accuracy scores showed the robustness of both model and efficiently deployment for identification of COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document