scholarly journals Integration of Context Information through Probabilistic Ontological Knowledge into Image Classification

Information ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 252 ◽  
Author(s):  
Andrea Apicella ◽  
Anna Corazza ◽  
Francesco Isgrò ◽  
Giuseppe Vettigli

The use of ontological knowledge to improve classification results is a promising line of research. The availability of a probabilistic ontology raises the possibility of combining the probabilities coming from the ontology with the ones produced by a multi-class classifier that detects particular objects in an image. This combination not only provides the relations existing between the different segments, but can also improve the classification accuracy. In fact, it is known that the contextual information can often give information that suggests the correct class. This paper proposes a possible model that implements this integration, and the experimental assessment shows the effectiveness of the integration, especially when the classifier’s accuracy is relatively low. To assess the performance of the proposed model, we designed and implemented a simulated classifier that allows a priori decisions of its performance with sufficient precision.

Author(s):  
Huimin Lu ◽  
Rui Yang ◽  
Zhenrong Deng ◽  
Yonglin Zhang ◽  
Guangwei Gao ◽  
...  

Chinese image description generation tasks usually have some challenges, such as single-feature extraction, lack of global information, and lack of detailed description of the image content. To address these limitations, we propose a fuzzy attention-based DenseNet-BiLSTM Chinese image captioning method in this article. In the proposed method, we first improve the densely connected network to extract features of the image at different scales and to enhance the model’s ability to capture the weak features. At the same time, a bidirectional LSTM is used as the decoder to enhance the use of context information. The introduction of an improved fuzzy attention mechanism effectively improves the problem of correspondence between image features and contextual information. We conduct experiments on the AI Challenger dataset to evaluate the performance of the model. The results show that compared with other models, our proposed model achieves higher scores in objective quantitative evaluation indicators, including BLEU , BLEU , METEOR, ROUGEl, and CIDEr. The generated description sentence can accurately express the image content.


2019 ◽  
Vol 11 (11) ◽  
pp. 1325 ◽  
Author(s):  
Chen Chen ◽  
Yi Ma ◽  
Guangbo Ren

Deep learning models, especially the convolutional neural networks (CNNs), are very active in hyperspectral remote sensing image classification. In order to better apply the CNN model to hyperspectral classification, we propose a CNN model based on Fletcher–Reeves algorithm (F–R CNN), which uses the Fletcher–Reeves (F–R) algorithm for gradient updating to optimize the convergence performance of the model in classification. In view of the fact that there are fewer optional training samples in practical applications, we further propose a method of increasing the number of samples by adding a certain degree of perturbed samples, which can also test the anti-interference ability of classification methods. Furthermore, we analyze the anti-interference and convergence performance of the proposed model in terms of different training sample data sets, different batch training sample numbers and iteration time. In this paper, we describe the experimental process in detail and comprehensively evaluate the proposed model based on the classification of CHRIS hyperspectral imagery covering coastal wetlands, and further evaluate it on a commonly used hyperspectral image benchmark dataset. The experimental results show that the accuracy of the two models after increasing training samples and adjusting the number of batch training samples is improved. When the number of batch training samples is continuously increased to 350, the classification accuracy of the proposed method can still be maintained above 80.7%, which is 2.9% higher than the traditional one. And its time consumption is less than that of the traditional one while ensuring classification accuracy. It can be concluded that the proposed method has anti-interference ability and outperforms the traditional CNN in terms of batch computing adaptability and convergence speed.


Author(s):  
Wei Sun ◽  
Xiaorui Zhang ◽  
Xiaozheng He

Abstract The image classification based on cloud computing suffers from difficult deployment as the network depth and data volume increase. Due to the depth of the model and the convolution process of each layer will produce a great amount of calculation, the GPU and storage performance of the device are extremely demanding, and the GPU and storage devices equipped on the embedded and mobile terminals cannot support large models. So it is necessary to compress the model so that the model can be deployed on these devices. Meanwhile, traditional compression based methods often miss many global features during the compression process, resulting in low classification accuracy. To solve the problem, this paper proposes a lightweight neural network model based on dilated convolution and depthwise separable convolution with twenty-nine layers for image classification. The proposed model employs the dilated convolution to expand the receptive field during the convolution process while maintaining the number of convolution parameters, which can extract more high-level global semantic features to improve the classification accuracy. Also, the depthwise separable convolution is applied to reduce the network parameters and computational complexity in convolution operations, which reduces the size of the network. The proposed model introduces three hyperparameters: width multiplier, image resolution, and dilated rate, to compress the network on the premise of ensuring accuracy. The experimental results show that compared with GoogleNet, the network proposed in this paper improves the classification accuracy by nearly 1%, and the number of parameters is reduced by 3.7 million.


Author(s):  
Veronika Lerche ◽  
Ursula Christmann ◽  
Andreas Voss

Abstract. In experiments by Gibbs, Kushner, and Mills (1991) , sentences were supposedly either authored by poets or by a computer. Gibbs et al. (1991) concluded from their results that the assumed source of the text influences speed of processing, with a higher speed for metaphorical sentences in the Poet condition. However, the dependent variables used (e.g., mean RTs) do not allow clear conclusions regarding processing speed. It is also possible that participants had prior biases before the presentation of the stimuli. We conducted a conceptual replication and applied the diffusion model ( Ratcliff, 1978 ) to disentangle a possible effect on processing speed from a prior bias. Our results are in accordance with the interpretation by Gibbs et al. (1991) : The context information affected processing speed, not a priori decision settings. Additionally, analyses of model fit revealed that the diffusion model provided a good account of the data of this complex verbal task.


2015 ◽  
Vol 25 ◽  
pp. 17-26 ◽  
Author(s):  
L. C. Alewijnse ◽  
E.J.A.T. Mattijssen ◽  
R.D. Stoel

The purpose of this paper is to contribute to the increasing awareness about the potential bias on the interpretation and conclusions of forensic handwriting examiners (FHEs) by contextual information. We briefly provide the reader with an overview of relevant types of bias, the difficulties associated with studying bias, the sources of bias and their potential influence on the decision making process in casework, and solutions to minimize bias in casework. We propose that the limitations of published studies on bias need to be recognized and that their conclusions must be interpreted with care. Instead of discussing whether bias is an issue in casework, the forensic handwriting community should actually focus on how bias can be minimized in practice. As some authors have already shown (e.g., Found & Ganas, 2014), it is relatively easy to implement context information management procedures in practice. By introducing appropriate procedures to minimize bias, not only forensic handwriting examination will be improved, it will also increase the acceptability of the provided evidence during court hearings. Purchase Article - $10


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 708
Author(s):  
Wenbo Liu ◽  
Fei Yan ◽  
Jiyong Zhang ◽  
Tao Deng

The quality of detected lane lines has a great influence on the driving decisions of unmanned vehicles. However, during the process of unmanned vehicle driving, the changes in the driving scene cause much trouble for lane detection algorithms. The unclear and occluded lane lines cannot be clearly detected by most existing lane detection models in many complex driving scenes, such as crowded scene, poor light condition, etc. In view of this, we propose a robust lane detection model using vertical spatial features and contextual driving information in complex driving scenes. The more effective use of contextual information and vertical spatial features enables the proposed model more robust detect unclear and occluded lane lines by two designed blocks: feature merging block and information exchange block. The feature merging block can provide increased contextual information to pass to the subsequent network, which enables the network to learn more feature details to help detect unclear lane lines. The information exchange block is a novel block that combines the advantages of spatial convolution and dilated convolution to enhance the process of information transfer between pixels. The addition of spatial information allows the network to better detect occluded lane lines. Experimental results show that our proposed model can detect lane lines more robustly and precisely than state-of-the-art models in a variety of complex driving scenarios.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


Sign in / Sign up

Export Citation Format

Share Document