scholarly journals Physiological and Environmental Factors Affecting the Composition of the Ejaculate in Mosquitoes and Other Insects

Insects ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 74 ◽  
Author(s):  
Megan Meuti ◽  
Sarah Short

In addition to transferring sperm, male mosquitoes deliver several proteins, hormones and other factors to females in their seminal fluid that inhibit remating, alter host-seeking behaviors and stimulate oviposition. Recently, bioinformatics, transcriptomics and proteomics have been used to characterize the genes transcribed in male reproductive tissues and the individual proteins that are delivered to females. Thanks to these foundational studies, we now understand the complexity of the ejaculate in several mosquito species. Building on this work, researchers have begun to identify the functions of various proteins and hormones in the male ejaculate, and how they mediate their effects on female mosquitoes. Here, we present an overview of these studies, followed by a discussion of an under-studied aspect of male reproductive physiology: the effects of biotic and abiotic factors on the composition of the ejaculate. We argue that future research in this area would improve our understanding of male reproductive biology from a physiological and ecological perspective, and that researchers may be able to leverage this information to study key components of the ejaculate. Furthermore, this work has the potential to improve mosquito control by allowing us to account for relevant factors when implementing vector control strategies involving male reproductive biology.

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 947
Author(s):  
Rishi Kondapaneni ◽  
Ashley N. Malcolm ◽  
Brian M. Vazquez ◽  
Eric Zeng ◽  
Tse-Yu Chen ◽  
...  

Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission.


Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 173 ◽  
Author(s):  
Samuel Karungu ◽  
Evans Atoni ◽  
Joseph Ogalo ◽  
Caroline Mwaliko ◽  
Bernard Agwanda ◽  
...  

Kenya is among the most affected tropical countries with pathogen transmitting Culicidae vectors. For decades, insect vectors have contributed to the emergence and distribution of viral and parasitic pathogens. Outbreaks and diseases have a great impact on a country’s economy, as resources that would otherwise be used for developmental projects are redirected to curb hospitalization cases and manage outbreaks. Infected invasive mosquito species have been shown to increasingly cross both local and global boarders due to the presence of increased environmental changes, trade, and tourism. In Kenya, there have been several mosquito-borne disease outbreaks such as the recent outbreaks along the coast of Kenya, involving chikungunya and dengue. This certainly calls for the implementation of strategies aimed at strengthening integrated vector management programs. In this review, we look at mosquitoes of public health concern in Kenya, while highlighting the pathogens they have been linked with over the years and across various regions. In addition, the major strategies that have previously been used in mosquito control and what more could be done to reduce or combat the menace caused by these hematophagous vectors are presented.


2020 ◽  
Author(s):  
Chongxing Zhang ◽  
Feng Miao ◽  
Qiqi Shi ◽  
Peng Cheng ◽  
Tao Li ◽  
...  

Abstract Background: Mosquito control based on chemical insecticides is considered as an important element in the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. As opposed to target site resistance, other mechanisms are far from being fully understood.Results: Susceptible strain of Cx. pipiens pallen showed elevated resistance levels to after 25 generations insecticide-selected, through bioinformatics analysis allowed detecting 2,502 proteins, of which 1513 were differentially expression in insecticide-selected strains as compared to the susceptible strain. Finally, midgut differential expression protein profiles and 62 proteins were selected for verification of differential expression using parallel reaction monitoring strategy.Conclusions Significant molecular resources were developed for Cx. pipiens pallen potential candidates involved in metabolic resistance as well as those participating in lower penetration or sequestration of insecticide. Global protein profiles of change to three insecticide strains combined with midgut profiles revealed multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Cx. pipiens pallens. Future research that is targeted towards RNA interference on the identified metabolic targets such as cuticular, cytochrome P450s and glutathione S-transferase proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Cx. pipiens pallen.


2020 ◽  
Vol 10 (4) ◽  
pp. 1353-1360 ◽  
Author(s):  
Vanessa M. Macias ◽  
Sage McKeand ◽  
Duverney Chaverra-Rodriguez ◽  
Grant L. Hughes ◽  
Aniko Fazekas ◽  
...  

Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by Anopheles mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially Anopheles) are difficult and inefficient, particularly for non-specialist laboratories. Here, we adapted the ReMOT Control (Receptor-mediated Ovary Transduction of Cargo) technique to deliver Cas9 ribonucleoprotein complex to adult mosquito ovaries, generating targeted and heritable mutations in the malaria vector Anopheles stephensi without injecting embryos. In Anopheles, ReMOT Control gene editing was as efficient as standard embryo injections. The application of ReMOT Control to Anopheles opens the power of CRISPR/Cas9 methods to malaria laboratories that lack the equipment or expertise to perform embryo injections and establishes the flexibility of ReMOT Control for diverse mosquito species.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 158 ◽  
Author(s):  
Joanna Reinhold ◽  
Claudio Lazzari ◽  
Chloé Lahondère

The temperature of the environment is one of the most important abiotic factors affecting the life of insects. As poikilotherms, their body temperature is not constant, and they rely on various strategies to minimize the risk of thermal stress. They have been thus able to colonize a large spectrum of habitats. Mosquitoes, such as Ae. aegypti and Ae. albopictus, vector many pathogens, including dengue, chikungunya, and Zika viruses. The spread of these diseases has become a major global health concern, and it is predicted that climate change will affect the mosquitoes’ distribution, which will allow these insects to bring new pathogens to naïve populations. We synthesize here the current knowledge on the impact of temperature on the mosquito flight activity and host-seeking behavior (1); ecology and dispersion (2); as well as its potential effect on the pathogens themselves and how climate can affect the transmission of some of these pathogens (3).


2007 ◽  
Vol 97 (2) ◽  
pp. 250-256 ◽  
Author(s):  
David M. Weller

Pseudomonas spp. are ubiquitous bacteria in agricultural soils and have many traits that make them well suited as biocontrol agents of soilborne pathogens. Tremendous progress has been made in characterizing the process of root colonization by pseudomonads, the biotic and abiotic factors affecting colonization, bacterial traits and genes contributing to rhizosphere competence, and the mechanisms of pathogen suppression. This review looks back over the last 30 years of Pseudomonas biocontrol research and highlights key studies, strains, and findings that have had significant impact on shaping our current understanding of biological control by bacteria and the direction of future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manuela Carnaghi ◽  
Steven R. Belmain ◽  
Richard J. Hopkins ◽  
Frances M. Hawkes

AbstractAnopheles mosquitoes transmit malaria, which affects one-fifth of the world population. A comprehensive understanding of mosquito behaviour is essential for the development of novel tools for vector control and surveillance. Despite abundant research on mosquito behaviour, little is known on the stimuli that drive malaria vectors during the landing phase of host-seeking. Using behavioural assays with a multimodal step approach we quantified both the individual and the combined effect of three host-associated stimuli in eliciting landing in Anopheles coluzzii females. We demonstrated that visual, olfactory and thermal sensory stimuli interact synergistically to increase the landing response. Furthermore, if considering only the final outcome (i.e. landing response), our insect model can bypass the absence of either a thermal or a visual stimulus, provided that at least one of these is presented simultaneously with the olfactory stimuli, suggesting that landing is the result of a flexible but accurate stimuli integration. These results have important implications for the development of mosquito control and surveillance tools.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 380 ◽  
Author(s):  
Maria Vittoria Mancini ◽  
Claudia Damiani ◽  
Sarah M. Short ◽  
Alessia Cappelli ◽  
Ulisse Ulissi ◽  
...  

Mosquitoes can transmit many infectious diseases, such as malaria, dengue, Zika, yellow fever, and lymphatic filariasis. Current mosquito control strategies are failing to reduce the severity of outbreaks that still cause high human morbidity and mortality worldwide. Great expectations have been placed on genetic control methods. Among other methods, genetic modification of the bacteria colonizing different mosquito species and expressing anti-pathogen molecules may represent an innovative tool to combat mosquito-borne diseases. Nevertheless, this emerging approach, known as paratransgenesis, requires a detailed understanding of the mosquito microbiota and an accurate characterization of selected bacteria candidates. The acetic acid bacteria Asaia is a promising candidate for paratransgenic approaches. We have previously reported that Asaia symbionts play a beneficial role in the normal development of Anopheles mosquito larvae, but no study has yet investigated the role(s) of Asaia in adult mosquito biology. Here we report evidence on how treatment with a highly specific anti-Asaia monoclonal antibody impacts the survival and physiology of adult Anopheles stephensi mosquitoes. Our findings offer useful insight on the role of Asaia in several physiological systems of adult mosquitoes, where the influence differs between males and females.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Thomas W Sappington ◽  
Louis S Hesler ◽  
K Clint Allen ◽  
Randy G Luttrell ◽  
Sharon K Papiernik

Abstract A preventative insecticide treatment is a tactic compatible with an integrated pest management (IPM) strategy for a particular pest only when a rescue treatment is not a realistic option, and if there is a reasonable expectation of economic damage by that pest. Most corn, Zea mays L., planted in the United States is protected from several sporadic early-season insect pests by neonicotinoid seed treatments, usually without the knowledge of the threat posed in a given field. We undertook an extensive literature review of these sporadic pests to clarify the prevalence of economic infestations in different regions of the United States, and the agronomic, biotic, and abiotic factors that affect the likelihood of attack. The summaries of the prevalence and risk factors presented here should help farmers and consultants better assess the value of preventative protection of seedling corn under local conditions, and provide others with a better understanding of the complexities farmers face in assessing risks posed by potential pests. The profiles suggest that, in general, pressure from most sporadic pests on seedling corn is rare or local, seldom high enough to decrease yield. However, this is not true in all regions for all sporadic pests. An important issue exposed by the profiles is that the value of preventative insecticide protection of seedling corn depends on understanding the likely combined pressure from multiple species. While such risk may often still be negligible, there is a great need for robust methodology to assess the risk posed by multiple pests. This represents a significant challenge for future research.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5151 ◽  
Author(s):  
Emily Lucille Moore ◽  
Mary Alice Scott ◽  
Stacy Deadra Rodriguez ◽  
Soumi Mitra ◽  
Julia Vulcan ◽  
...  

BackgroundMosquito repellents can be an effective method for personal protection against mosquito bites that are a nuisance and carry the risk of transmission of mosquito-borne pathogens likeplasmodia, dengue virus, chikungunya virus, and Zika virus. A multitude of commercially available products are currently on the market, some of them highly effective while others have low or no efficacy. Many home remedies of unknown efficacy are also widely used.MethodsWe conducted a survey study to determine what kind of mosquito repellents and other mosquito control strategies people use. Our online survey was focused on unconventional methods and was answered by 5,209 participants.ResultsThe majority of participants resided in the United States, were female (67%), had higher education (81% had a university degree), and were 18 to 37 years old (50%). The most commonly used repellent was DEET spray (48%), followed closely by citronella candles (43%) and ‘natural’ repellent sprays (36%). We collected a plethora of home remedies and other strategies people use that warrant further research into their effectiveness.DiscussionOur study lays the foundation for future research in alternative, unconventional methods to repel mosquitoes that may be culturally acceptable and accessible for people.


Sign in / Sign up

Export Citation Format

Share Document