scholarly journals Effect on Intermediary Metabolism and Digestive Parameters of the High Substitution of Fishmeal with Insect Meal in Sparus aurata Feed

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 965
Author(s):  
Dmitri Fabrikov ◽  
María del Carmen Vargas-García ◽  
Fernando G. Barroso ◽  
María José Sánchez-Muros ◽  
Sylvia María Cacua Ortíz ◽  
...  

Hermetia illucens and Tenebrio molitor were tested on account of their potential to replace fish protein in feed. Two levels of replacement for H. illucens, 30% and 50% (H30 and H50), and one for T. molitor, 50% (T50), as well as an additional diet with a modified fatty acid fraction (H50M), were investigated in relation to juvenile Sparus aurata growth indices, enzyme activities and gut microbiome. A T50 diet showed similar results to a control (C) diet, with no significant differences regarding morphological indices and minor differences for nutritional indices. Regarding the gut microbiome, H50M was the diet which showed the more similar prokaryotic community to C, which suggests that fatty acid fractions might influence the composition of the gut microbiome. Nevertheless, differences appeared to be related to a redistribution of dominant species, while changes in species affiliation were limited to minoritary species. The positive correlation between some of these minoritary species (Peptostreptococcus russellii, Streptococcus dysgalactiae and Weisella confusa) and several fish growth parameters might explain differences between control and insect diets. Deciphering such uncertainty and revealing the potential role these unusual species may play on fish performance should be addressed in future investigations.

2017 ◽  
Vol 118 (7) ◽  
pp. 500-512 ◽  
Author(s):  
Serhat Turkmen ◽  
Maria J. Zamorano ◽  
Hipólito Fernández-Palacios ◽  
Carmen M. Hernández-Cruz ◽  
Daniel Montero ◽  
...  

AbstractNutrition during periconception and early development can modulate metabolic routes to prepare the offspring for adverse conditions through a process known as nutritional programming. In gilthead sea bream, replacement of fish oil (FO) with linseed oil (LO) in broodstock diets improves growth in the 4-month-old offspring challenged with low-FO and low-fishmeal (FM) diets for 1 month. The present study further investigated the effects of broodstock feeding on the same offspring when they were 16 months old and were challenged for a second time with the low-FM and low-FO diet for 2 months. The results showed that replacement of parental moderate-FO feeding with LO, combined with juvenile feeding at 4 months old with low-FM and low-FO diets, significantly (P<0·05) improved offspring growth and feed utilisation of low-FM/FO diets even when they were 16 months old: that is, when they were on the verge of their first reproductive season. Liver fatty acid composition was significantly affected by broodstock or reminder diets as well as by their interaction. Moreover, the reduction of long-chain PUFA and increase in α-linolenic acid and linoleic acid in broodstock diets lead to a significant down-regulation of hepatic lipoprotein lipase (P<0·001) and elongation of very long-chain fatty acids protein 6 (P<0·01). Besides, fatty acid desaturase 2 values were positively correlated to hepatic levels of 18 : 4n-3, 18 : 3n-6, 20 : 5n-3, 22 : 6n-3 and 22 : 5n-6. Thus, this study demonstrated the long-term nutritional programming of gilthead sea bream through broodstock feeding, the effect of feeding a ‘reminder’ diet during juvenile stages to improve utilisation of low-FM/FO diets and fish growth as well as the regulation of gene expression along the fish’s life-cycle.


2020 ◽  
Author(s):  
Georgina M Williams ◽  
Linda C Tapsell ◽  
Claire L O’Brien ◽  
Susan M Tosh ◽  
Eden M Barrett ◽  
...  

Abstract Context Cereal fiber modulates the gut microbiome and benefits metabolic health. The potential link between these effects is of interest.0 Objective The aim for this systematic review was to assess evidence surrounding the influence of cereal fiber intake on microbiome composition, microbiome diversity, short-chain fatty acid production, and risk factors for metabolic syndrome. Data Sources and Extraction The MEDLINE, PubMed, CINAHL, and Cochrane Library databases were searched systematically, and quality of studies was assessed using the Cochrane Risk of Bias 2.0 tool. Evidence relating to study design, dietary data collection, and outcomes was qualitatively synthesized on the basis of fiber type. Data Analysis Forty-six primary publications and 2 secondary analyses were included. Cereal fiber modulated the microbiome in most studies; however, taxonomic changes indicated high heterogeneity. Short-chain fatty acid production, microbiome diversity, and metabolic-related outcomes varied and did not always occur in parallel with microbiome changes. Poor dietary data were a further limitation. Conclusions Cereal fiber may modulate the gut microbiome; however, evidence of the link between this and metabolic outcomes is limited. Additional research is required with a focus on robust and consistent methodology. Systematic Review Registration PROSPERO registration no. CRD42018107117


1994 ◽  
Vol 25 (3) ◽  
pp. 295-304 ◽  
Author(s):  
C. RODRIGUEZ ◽  
J. A. PEREZ ◽  
M. S. IZQUIERDO ◽  
J. MORA ◽  
A. LORENZO ◽  
...  

1936 ◽  
Vol 64 (3) ◽  
pp. 333-338 ◽  
Author(s):  
O. M. Helmer

The inhibiting action of pancreatic tissue was found to be associated with the unsaturated fatty acid fraction. As small an amount of fatty acid as 0.1 mg. inhibited the chicken sarcoma agent contained in 0.2 cc. of a 1:60 aqueous extract of Chicken Tumor I. The unsaturated fatty acid had an acid number and an iodine number similar to those for oleic acid. Commercial oleic acid also was found to inhibit the growth of the chicken sarcoma in comparable quantities.


Aquaculture ◽  
2005 ◽  
Vol 249 (1-4) ◽  
pp. 477-486 ◽  
Author(s):  
A. Ibarz ◽  
J. Blasco ◽  
M. Beltrán ◽  
M.A. Gallardo ◽  
J. Sánchez ◽  
...  

1995 ◽  
Vol 46 (2) ◽  
pp. 187-192 ◽  
Author(s):  
P. JAMBU ◽  
A. AMBLES ◽  
P. MAGNOUX ◽  
E. PARLANTI

Sign in / Sign up

Export Citation Format

Share Document