scholarly journals The Influence of Visual Input on Electromyographic Patterns of Masticatory and Cervical Spine Muscles in Subjects with Myopia

2021 ◽  
Vol 10 (22) ◽  
pp. 5376
Author(s):  
Grzegorz Zieliński ◽  
Anna Matysik-Woźniak ◽  
Maria Rapa ◽  
Michał Baszczowski ◽  
Michał Ginszt ◽  
...  

This study aimed to analyze the change of visual input on electromyographic patterns of masticatory and cervical spine muscles in subjects with myopia. After applying the inclusion criteria, 50 subjects (18 males and 32 females) with myopia ranging from −0.5 to −5.75 Diopters (D), were included in the study. Four muscle pairs were analyzed: the anterior part of the temporalis muscle (TA), the superficial part of the masseter muscle (MM), the anterior belly of the digastric muscle (DA), and the middle part of the sternocleidomastoid muscle belly (SCM) during resting and functional activity. Statistical analysis showed a significant decrease within functional indices (FCI) for the sternocleidomastoid muscle (FCI SCM R, FCI SCM L, FCI SCM total) during clenching in the intercuspal position with eyes closed compared to eyes open. During maximum mouth opening, a statistically significant increase of functional opening index for the left temporalis muscle (FOI TA L) was observed. Within the activity index (AcI), there was a statistically significant decrease during clenching on dental cotton rollers with eyes closed compared to eyes open.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Alessandro Marco De Nunzio ◽  
Salvatore Iervolino ◽  
Carmela Zincarelli ◽  
Luisa Di Gioia ◽  
Giuseppe Rengo ◽  
...  

Objectives. To assess the motor control during quiet stance in patients with established ankylosing spondylitis (AS) and to evaluate the effect of visual input on the maintenance of a quiet posture.Methods. 12 male AS patients (mean age 50.1 ± 13.2 years) and 12 matched healthy subjects performed 2 sessions of 3 trials in quiet stance, with eyes open (EO) and with eyes closed (EC) on a baropodometric platform. The oscillation of the centre of feet pressure (CoP) was acquired. Indices of stability and balance control were assessed by the sway path (SP) of the CoP, the frequency bandwidth (FB1) that includes the 80% of the area under the amplitude spectrum, the mean amplitude of the peaks (MP) of the sway density curve (SDC), and the mean distance (MD) between 2 peaks of the SDC.Results. In severe AS patients, the MD between two peaks of the SDC and the SP of the center of feet pressure were significantly higher than controls during both EO and EC conditions. The MP was significantly reduced just on EC.Conclusions. Ankylosing spondylitis exerts negative effect on postural stability, not compensable by visual inputs. Our findings may be useful in the rehabilitative management of the increased risk of falling in AS.


2005 ◽  
Vol 101 (1) ◽  
pp. 317-334 ◽  
Author(s):  
Ardesheer Talati ◽  
Francisco J. Valero-Cuevas ◽  
Joy Hirsch

Models of motor guidance that dynamically adjust to the availability and quality of sensory information are based on the observation that dexterous tasks are routinely performed using various combinations of visual and tactile inputs. However, a dynamic neural system that acquires and processes relevant visual and tactile information remains relatively uncharacterized in humans. In this study, whole-brain functional magnetic resonance images were acquired during a dexterous manipulation task, compression of the end caps of a slender spring prone to buckling, to investigate the neural systems associated with motor guidance under four visual and tactile guidance conditions: (1) eyes closed (no visual input), smooth end caps, (2) eyes closed, rough end caps, (3) eyes open and watching hand, smooth end caps, and (4) eyes open and watching hand, rough end caps. Performance of the dexterous task remained constant in all conditions. Variations in the two levels of visual input resulted in modulation of activity in the middle and inferior occipital gyrii and inferior parietal lobule, and variation in the two levels of tactile input during the task resulted in modulation of activity in the precentral (primary motor) gyrus. Although significantly active in all conditions, cingulate gyrus, medial frontal gyrus, postcentral gyrus, and cerebellum activities were not modulated by levels of either visual or somatosensory input, and no interaction effects were observed. Together, these data indicate that a fine-tuned motor task guided by varying visual and tactile information engages a distributed and integrated neural complex consisting of control and executive functions and regions that process dynamic sensory information related to guidance functions.


2020 ◽  
Vol 16 ◽  
Author(s):  
Neerja Thukral ◽  
Jaspreet Kaur ◽  
Manoj Malik

Background: Peripheral neuropathy is a major and chronic complication of diabetes mellitus affecting more than 50% of patients suffering from diabetes. There is involvement of both large and small diameter nerve fibres leading to altered somatosensory and motor sensations, thereby causing impaired balance and postural instability. Objective: To assess the effects of exercises on posture and balance in patients suffering from diabetes mellitus. Method: Mean changes in Timed Up and Go test(TUGT), Berg Balance Scale and Postural Sway with eyes open and eyes closed on Balance System were primary outcome measures. RevMan 5.3 software was used for the meta-analyses. Eighteen randomized controlled trials met the selection criteria and were included in the study. All the studies ranked high on PEDro Rating scale. Risk of bias was assessed by Cochrane collaboration tool of risk of bias. Included studies had low risk of bias. Sixteen RCT’s were included for the meta-analysis. Result: Results of meta-analysis showed that there was statistically significant improvement in TUGT with p≤ 0.05 and substantial heterogeneity (I 2 = 84%, p < 0.00001) in experimental group as compared to control group. There was statistically significant difference in Berg Balance Scale scores and heterogeneity of I 2 = 62%, p < 0.00001 and significant changes in postural stability (eyes open heterogeneity of I 2 = 100%, p =0.01 and eyes closed, heteogeneity I 2 = 0%, p =0.01). Sensitivity analysis causes change in heterogeneity. Conclusion: It can be concluded that various exercises like balance training, core stability, Tai-Chi, proprioceptive training etc. have a significant effect in improving balance and posture in diabetic neuropathy.


Author(s):  
Agnieszka D. Jastrzębska

This experiment examined changes in body sway after Wingate test (WAnT) in 19 adolescents practicing alpine skiing, subjected to the same type of training load for 4–5 years (10 girls and nine boys). The postural examinations were performed with eyes open (EO), eyes closed (EC), and sway reverenced vision (SRV) in the medial-lateral (ML) and anterior-posterior (AP) planes. The displacement of center of foot pressure (CoP), range of sway (RS), mean sway velocity (MV), way length, and surface area were measured in bipedal upright stance before and after the WAnT to assess the influence of fatigue on postural balance. There were no significant differences in WAnT parameters between girls and boys. Relative peak power (RPP), relative total work (RWtot) were (girls vs. boys) 8.89 ± 0.70 vs. 9.57 ± 1.22 W/kg, p < 0.05 and 227.91 ± 14.98 vs. 243.22 ± 30.24 W/kg, p < 0.05 respectively. The fatigue index (FI) was also on similar level in both genders; however, blood lactate concentration (BLa) was significantly higher in boys (10.35 ± 1.16 mM) than in girls (8.67 ± 1.35 mM) p = 0.007. In the EO examination, statistically significant differences between resting and fatigue conditions in the whole group and after the division into girls and boys were found. In fatigue conditions, significant gender differences were noted for measurements in the ML plane (sway path and RS) and RS in the AP plane. Comparison of the three conditions shows differences between EO vs. EC and SRV in AP plane measured parameters, and for RS in ML plane in rest condition in girls. The strong correlations between FI and CoP parameters mainly in ML plane in the whole group for all examination conditions were noted. By genders, mainly RS in ML plane strongly correlates with FI (r > 0.7). No correlation was found between BLa and CoP parameters (p > 0.06). The presented results indicate that subjecting adolescents of both genders to the same training may reduce gender differences in the postural balance ability at rest but not in fatigue conditions and that girls are significantly superior in postural balance in the ML plane than boys. It was also shown that too little or too much information may be destructive to postural balance in young adolescents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 412
Author(s):  
Han-Ping Huang ◽  
Chang Francis Hsu ◽  
Yi-Chih Mao ◽  
Long Hsu ◽  
Sien Chi

Gait stability has been measured by using many entropy-based methods. However, the relation between the entropy values and gait stability is worth further investigation. A research reported that average entropy (AE), a measure of disorder, could measure the static standing postural stability better than multiscale entropy and entropy of entropy (EoE), two measures of complexity. This study tested the validity of AE in gait stability measurement from the viewpoint of the disorder. For comparison, another five disorders, the EoE, and two traditional metrics methods were, respectively, used to measure the degrees of disorder and complexity of 10 step interval (SPI) and 79 stride interval (SI) time series, individually. As a result, every one of the 10 participants exhibited a relatively high AE value of the SPI when walking with eyes closed and a relatively low AE value when walking with eyes open. Most of the AE values of the SI of the 53 diseased subjects were greater than those of the 26 healthy subjects. A maximal overall accuracy of AE in differentiating the healthy from the diseased was 91.1%. Similar features also exists on those 5 disorder measurements but do not exist on the EoE values. Nevertheless, the EoE versus AE plot of the SI also exhibits an inverted U relation, consistent with the hypothesis for physiologic signals.


2021 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Anna Kaiser ◽  
Pascal-M. Aggensteiner ◽  
Martin Holtmann ◽  
Andreas Fallgatter ◽  
Marcel Romanos ◽  
...  

Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.


1996 ◽  
Vol 22 (3) ◽  
pp. 245-260 ◽  
Author(s):  
Mario Signorino ◽  
Enrico Brizioli ◽  
Loredana Amadio ◽  
Natascia Belardinelli ◽  
Eugenio Pucci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document