scholarly journals The Role of Long Noncoding RNAs in Diabetic Alzheimer’s Disease

2018 ◽  
Vol 7 (11) ◽  
pp. 461 ◽  
Author(s):  
Young-Kook Kim ◽  
Juhyun Song

Long noncoding RNAs (lncRNAs) are involved in diverse physiological and pathological processes by modulating gene expression. They have been found to be dysregulated in the brain and cerebrospinal fluid of patients with neurodegenerative diseases, and are considered promising therapeutic targets for treatment. Among the various neurodegenerative diseases, diabetic Alzheimer’s disease (AD) has been recently emerging as an important issue due to several unexpected reports suggesting that metabolic issues in the brain, such as insulin resistance and glucose dysregulation, could be important risk factors for AD. To facilitate understanding of the role of lncRNAs in this field, here we review recent studies on lncRNAs in AD and diabetes, and summarize them with different categories associated with the pathogenesis of the diseases including neurogenesis, synaptic dysfunction, amyloid beta accumulation, neuroinflammation, insulin resistance, and glucose dysregulation. It is essential to understand the role of lncRNAs in the pathogenesis of diabetic AD from various perspectives for therapeutic utilization of lncRNAs in the near future.

2020 ◽  
Vol 21 (18) ◽  
pp. 6739
Author(s):  
Sharmeelavathi Krishnan ◽  
Yasaswi Shrestha ◽  
Dona P. W. Jayatunga ◽  
Sarah Rea ◽  
Ralph Martins ◽  
...  

Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.


2020 ◽  
Vol 21 (22) ◽  
pp. 8767
Author(s):  
Nicole Jacqueline Jensen ◽  
Helena Zander Wodschow ◽  
Malin Nilsson ◽  
Jørgen Rungby

Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.


2021 ◽  
Author(s):  
Gláucia Maria Senhorinha ◽  
Arlys Emanuel Mendes da Silva Santos ◽  
Douglas Daniel Dophine

Background: Metabolic syndrome (MS) leads to the deposits formation of insoluble protein aggregates, neuroinflammation, oxidative stress, neuronal insulin resistance, progressive insulin resistance, desensitization and β-amyloid amyloidosis in the brain, besides direct ischemic effects which are closely associated with Alzheimer’s disease (AD).1 Objectives: The present study seeks to understand the role of the metabolic syndrome in the pathophysiology of Alzheimer’s disease and to describe preventive and therapeutic interventions. Methods: PUBMED and Web of Science were the databases used, the following descriptors were used to search the articles: “Alzheimer Disease” OR “Alzheimer Dementia” AND “Metabolic Syndrome”. Results: The studies in general have shown that MS is related to AD through brain insulin resistance, triggered by oxidative stress and neuroinflammation. It is related to the progressive atrophy of brain regions involved in the progression of AD. Insulin resistance in the brain is related to the progressive atrophy of the brain regions from initial progression of AD. These regions are cingulate cortices, medial temporal lobe, prefrontal gyri and other regions.³ Thus, there is an inhibition of the mechanisms of beta-amyloid removal, leading to its accumulation, which generates neuroinflammation, that in turn potentiates insulin resistance in the central nervous system, contributing to the genesis and progression of cognitive damage.2,3 Conclusions: Insulin resistance plays a major role in the initiation and perpetuation of cognitive impairment in AD. Furthermore, the components of the MS associated with AD, when treated with preventive and therapeutic measures, break this association by promoting rebalancing of the metabolism.


2021 ◽  
Author(s):  
Manuel H. Janeiro ◽  
Elena Puerta ◽  
Maria Lanz ◽  
Fermin I. Milagro ◽  
Maria J Ramirez ◽  
...  

It has been established that ageing is the major risk factor for cognitive deficiency or neurodegenerative diseases such as Alzheimer's disease (AD) and it is becoming increasingly evident that insulin resistance is another factor. Biological plausibility for a link between insulin resistance and dementia is relevant for understanding disease etiology, and to form bases for prevention efforts to decrease disease burden. The dysfunction of the insulin signaling system and glucose metabolism has been proposed to be responsible for brain aging. Normal insulin signaling in the brain is required to mediate growth, metabolic functions, and the survival of neurons and glia. Insulin receptors are densely expressed in the olfactory bulb, the cerebral cortex and the hippocampus and regulate neurotransmitter release and receptor recruitment. In normal elderly individuals, reduced glucose tolerance and decreased insulin levels in the aged brain are typically observed. Furthermore, insulin signaling is aberrantly activated in the AD brain, leading to non-responsive insulin receptor signaling. The senescence accelerated mouse (SAMP8) mouse was one of the accelerated senescence strains that spontaneously developed from breeding pairs of the AKR/J series. The SAMP8 mouse develops early learning and memory deficits (between 6 and 8 months) together with other characteristics similar to those seen in Alzheimer's disease. The present project proposes the investigation of the missing link between aging, insulin resistance and dementia. Peripheral but not central insulin resistance was found in SAMP8 mice accompanied by cognitive deficiencies. Furthermore, a marked peripheral inflammatory state (i.e. significantly higher adipose tissue TNF-[alpha]; and IL6 levels) were observed in SAMP8 mice, followed by neuroinflammation that could be due to a higher cytokine leaking into the brain across a aging-disrupted BBB. Moreover, aging-induced gut dysbiosis produces higher TMAO that could also contribute to the peripheral and central inflammatory tone as well as to the cognitive deficiencies observed in SAMP8 mice. All those alterations were reversed by DMB, a treatment inhibits the transformation of choline, carnitine and crotonobetaine, decreaseing TMAO levels. The ever-increasing incidence of neurodegenerative diseases not only limits the life quality of the affected individuals and their families but also poses an enormous demand on the societies. Thus, it is instrumental to pursue novel promising approaches to prevent and treat it at the highest possible speed to rapidly translate them to clinical practice. From this point of view, data obtained from this project will be instrumental to validate the principle approach of microbial dysbiosis and increased TMAO secretion as a key link between aging, insulin resistance and dementia. Collectively, the proposed experiments ideally integrate the aim to promote a novel approach to improve the lives of those suffering from cognitive disturbances.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Soumyabrata Munshi ◽  
Vineet Kumar Khemka ◽  
Kalpita Banerjee ◽  
Sasanka Chakrabarti

Chronic neurodegenerative diseases are a group of devastating neurological disorders that result in significant morbidity and mortality in the elderly population worldwide. Recent researches have shown some interesting associations of the classical antiobesity hormone leptin with two most important neurodegenerative diseases—Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although several clinical studies have found the procognitive and memory-enhancing role of this peptide hormone in leptin-deficient patients, surprisingly it has not been used in any clinical trials involving patients with developing or full-blown neurodegenerative conditions. This review article is an attempt to bring together the existing information about the clinical associations of leptin with AD and PD. It starts with the basic understanding of leptin action in the brain and its derangements in these diseases and eventually discusses the potential of this hormone as a neuroprotective agent in clinical scenario.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 311 ◽  
Author(s):  
Sandeep Malampati ◽  
Ju-Xian Song ◽  
Benjamin Chun-Kit Tong ◽  
Anusha Nalluri ◽  
Chuan-Bin Yang ◽  
...  

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in older individuals with specific neuropsychiatric symptoms. It is a proteinopathy, pathologically characterized by the presence of misfolded protein (Aβ and Tau) aggregates in the brain, causing progressive dementia. Increasing studies have provided evidence that the defect in protein-degrading systems, especially the autophagy-lysosome pathway (ALP), plays an important role in the pathogenesis of AD. Recent studies have demonstrated that AD-associated protein aggregates can be selectively recognized by some receptors and then be degraded by ALP, a process termed aggrephagy. In this study, we reviewed the role of aggrephagy in AD development and discussed the strategy of promoting aggrephagy using small molecules for the treatment of AD.


2020 ◽  
Vol 19 (3) ◽  
pp. 174-183
Author(s):  
Subrat Kumar Bhattamisra ◽  
Lee Yuen Shin ◽  
Hanis Izzati Binti Mohd Saad ◽  
Vikram Rao ◽  
Mayuren Candasamy ◽  
...  

The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords “insulin”; “insulin resistance”; “Alzheimer’s disease”; “Parkinson’s disease” in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.


2014 ◽  
Vol 13 (8) ◽  
pp. 1315-1324 ◽  
Author(s):  
Mohammad Ahmad ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Mahfoozur Rahman ◽  
Mohammad Anwar ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3746
Author(s):  
Ilaria Zuliani ◽  
Chiara Lanzillotta ◽  
Antonella Tramutola ◽  
Eugenio Barone ◽  
Marzia Perluigi ◽  
...  

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer’s disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


Sign in / Sign up

Export Citation Format

Share Document