scholarly journals Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases

2020 ◽  
Vol 21 (22) ◽  
pp. 8767
Author(s):  
Nicole Jacqueline Jensen ◽  
Helena Zander Wodschow ◽  
Malin Nilsson ◽  
Jørgen Rungby

Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.

2018 ◽  
Vol 7 (11) ◽  
pp. 461 ◽  
Author(s):  
Young-Kook Kim ◽  
Juhyun Song

Long noncoding RNAs (lncRNAs) are involved in diverse physiological and pathological processes by modulating gene expression. They have been found to be dysregulated in the brain and cerebrospinal fluid of patients with neurodegenerative diseases, and are considered promising therapeutic targets for treatment. Among the various neurodegenerative diseases, diabetic Alzheimer’s disease (AD) has been recently emerging as an important issue due to several unexpected reports suggesting that metabolic issues in the brain, such as insulin resistance and glucose dysregulation, could be important risk factors for AD. To facilitate understanding of the role of lncRNAs in this field, here we review recent studies on lncRNAs in AD and diabetes, and summarize them with different categories associated with the pathogenesis of the diseases including neurogenesis, synaptic dysfunction, amyloid beta accumulation, neuroinflammation, insulin resistance, and glucose dysregulation. It is essential to understand the role of lncRNAs in the pathogenesis of diabetic AD from various perspectives for therapeutic utilization of lncRNAs in the near future.


2020 ◽  
Vol 21 (18) ◽  
pp. 6739
Author(s):  
Sharmeelavathi Krishnan ◽  
Yasaswi Shrestha ◽  
Dona P. W. Jayatunga ◽  
Sarah Rea ◽  
Ralph Martins ◽  
...  

Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Soumyabrata Munshi ◽  
Vineet Kumar Khemka ◽  
Kalpita Banerjee ◽  
Sasanka Chakrabarti

Chronic neurodegenerative diseases are a group of devastating neurological disorders that result in significant morbidity and mortality in the elderly population worldwide. Recent researches have shown some interesting associations of the classical antiobesity hormone leptin with two most important neurodegenerative diseases—Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although several clinical studies have found the procognitive and memory-enhancing role of this peptide hormone in leptin-deficient patients, surprisingly it has not been used in any clinical trials involving patients with developing or full-blown neurodegenerative conditions. This review article is an attempt to bring together the existing information about the clinical associations of leptin with AD and PD. It starts with the basic understanding of leptin action in the brain and its derangements in these diseases and eventually discusses the potential of this hormone as a neuroprotective agent in clinical scenario.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 169 ◽  
Author(s):  
Dariusz Włodarek

The goal of this review was to assess the effectiveness of ketogenic diets on the therapy of neurodegenerative diseases. The ketogenic diet is a low-carbohydrate and fat-rich diet. Its implementation has a fasting-like effect, which brings the body into a state of ketosis. The ketogenic diet has, for almost 100 years, been used in the therapy of drug-resistant epilepsy, but current studies indicate possible neuroprotective effects. Thus far, only a few studies have evaluated the role of the ketogenic diet in the prevention of Parkinson’s disease (PD) and Alzheimer’s disease (AD). Single studies with human participants have demonstrated a reduction of disease symptoms after application. The application of the ketogenic diet to elderly people, however, raises certain concerns. Persons with neurodegenerative diseases are at risk of malnutrition, while food intake reduction is associated with disease symptoms. In turn, the ketogenic diet leads to a reduced appetite; it is not attractive from an organoleptic point of view, and may be accompanied by side effects of the gastrointestinal system. All this may lead to further lowering of consumed food portions by elderly persons with neurodegenerative diseases and, in consequence, to further reduction in the supply of nutrients provided by the diet. Neither data on the long-term application of the ketogenic diet in patients with neurodegenerative disease or data on its effects on disease symptoms are available. Further research is needed to evaluate the suitability of the ketogenic diet in the therapy of AD- or PD-affected persons.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 311 ◽  
Author(s):  
Sandeep Malampati ◽  
Ju-Xian Song ◽  
Benjamin Chun-Kit Tong ◽  
Anusha Nalluri ◽  
Chuan-Bin Yang ◽  
...  

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in older individuals with specific neuropsychiatric symptoms. It is a proteinopathy, pathologically characterized by the presence of misfolded protein (Aβ and Tau) aggregates in the brain, causing progressive dementia. Increasing studies have provided evidence that the defect in protein-degrading systems, especially the autophagy-lysosome pathway (ALP), plays an important role in the pathogenesis of AD. Recent studies have demonstrated that AD-associated protein aggregates can be selectively recognized by some receptors and then be degraded by ALP, a process termed aggrephagy. In this study, we reviewed the role of aggrephagy in AD development and discussed the strategy of promoting aggrephagy using small molecules for the treatment of AD.


Author(s):  
You-Hyang Song ◽  
Jiwon Yoon ◽  
Seung-Hee Lee

AbstractSomatostatin (SST) is a well-known neuropeptide that is expressed throughout the brain. In the cortex, SST is expressed in a subset of GABAergic neurons and is known as a protein marker of inhibitory interneurons. Recent studies have identified the key functions of SST in modulating cortical circuits in the brain and cognitive function. Furthermore, reduced expression of SST is a hallmark of various neurological disorders, including Alzheimer’s disease and depression. In this review, we summarize the current knowledge on SST expression and function in the brain. In particular, we describe the physiological roles of SST-positive interneurons in the cortex. We further describe the causal relationship between pathophysiological changes in SST function and various neurological disorders, such as Alzheimer’s disease. Finally, we discuss potential treatments and possibility of novel drug developments for neurological disorders based on the current knowledge on the function of SST and SST analogs in the brain derived from experimental and clinical studies.


2022 ◽  
Vol 8 ◽  
Author(s):  
Matthieu Lilamand ◽  
François Mouton-Liger ◽  
Emmanuelle Di Valentin ◽  
Marta Sànchez Ortiz ◽  
Claire Paquet

Alzheimer's disease (AD) is the most frequent age-related neurodegenerative disorder, with no curative treatment available so far. Alongside the brain deposition of β-amyloid peptide and hyperphosphorylated tau, neuroinflammation triggered by the innate immune response in the central nervous system, plays a central role in the pathogenesis of AD. Glucose usually represents the main fuel for the brain. Glucose metabolism has been related to neuroinflammation, but also with AD lesions. Hyperglycemia promotes oxidative stress and neurodegeneration. Insulinoresistance (e.g., in type 2 diabetes) or low IGF-1 levels are associated with increased β-amyloid production. However, in the absence of glucose, the brain may use another fuel: ketone bodies (KB) produced by oxidation of fatty acids. Over the last decade, ketogenic interventions i.e., ketogenic diets (KD) with very low carbohydrate intake or ketogenic supplementation (KS) based on medium-chain triglycerides (MCT) consumption, have been studied in AD animal models, as well as in AD patients. These interventional studies reported interesting clinical improvements in animals and decrease in neuroinflammation, β-amyloid and tau accumulation. In clinical studies, KS and KD were associated with better cognition, but also improved brain metabolism and AD biomarkers. This review summarizes the available evidence regarding KS/KD as therapeutic options for individuals with AD. We also discuss the current issues and potential adverse effects associated with these nutritional interventions. Finally, we propose an overview of ongoing and future registered trials in this promising field.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2014 ◽  
Vol 13 (8) ◽  
pp. 1315-1324 ◽  
Author(s):  
Mohammad Ahmad ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Mahfoozur Rahman ◽  
Mohammad Anwar ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 6071
Author(s):  
Suzanne Gascon ◽  
Jessica Jann ◽  
Chloé Langlois-Blais ◽  
Mélanie Plourde ◽  
Christine Lavoie ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood–brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.


Sign in / Sign up

Export Citation Format

Share Document