scholarly journals Basis of PD1/PD-L1 Therapies

2019 ◽  
Vol 8 (12) ◽  
pp. 2168 ◽  
Author(s):  
Barbara Seliger

It is obvious that tumor cells have developed a number of strategies to escape immune surveillance including an altered expression of various immune checkpoints, such as the programmed death-1 receptor (PD-1) and its ligands PD-L1 and PD-L2. The interaction between PD-1 and PD-L1 results in an activation of self-tolerance pathways in both immune cells as well as tumor cells. Thus, these molecules represent excellent targets for T cell-based immunotherapies. However, the efficacy of therapies using checkpoint inhibitors is variable and only a limited number of patients receive a long-term response, while others develop resistances. Therefore, a better insight into the constitutive expression levels and their control as well as the predictive and prognostic value of PD-1/PD-L1, which are controversially discussed due to the methodological assessment, the dynamic and time-related variable expression of these molecules, is urgently required. In this review, the current knowledge of the PD-L1 and PD-1 genes, their expression in immune and tumor cells, the underlying molecular mechanisms of their regulation and their association with clinical parameters and therapy responses are summarized.

2021 ◽  
Vol 22 (16) ◽  
pp. 9030
Author(s):  
Justyna Błach ◽  
Kamila Wojas-Krawczyk ◽  
Marcin Nicoś ◽  
Paweł Krawczyk

Immune checkpoint inhibitors (ICIs) have a huge impact on clinical treatment results in non-small cell lung cancer (NSCLC). Blocking antibodies targeting programmed cell death protein 1 (PD-1), programmed cell death protein ligand 1 (PD-L1) or CTLA-4 (cytotoxic T cell antigen 4) have been developed and approved for the treatment of NSCLC patients. However, a large number of patients develop resistance to this type of treatment. Primary and secondary immunotherapy resistance are distinguished. No solid biomarkers are available that are appropriate to predict the unique sensitivity to immunotherapy. Knowledge of predictive markers involved in treatment resistance is fundamental for planning of new treatment combinations. Scientists focused research on the use of immunotherapy as an essential treatment in combination with other therapy strategies, which could increase cancer immunogenicity by generating tumor cells death and new antigen release as well as by targeting other immune checkpoints and tumor microenvironment. In the present review, we summarize the current knowledge of molecular bases underlying immunotherapy resistance and discuss the capabilities and the reason of different therapeutic combinations.


Author(s):  
Alessandra Modena ◽  
Chiara Ciccarese ◽  
Roberto Iacovelli ◽  
Matteo Brunelli ◽  
Rodolfo Montironi ◽  
...  

Despite recent advances in the treatment of metastatic castrationresistant prostate cancer (mCRPC), agents that provide durable disease control and long-term survival are still needed. It is a fact that a tumor-induced immunosuppressive status (mediated by aberrant activation of inhibitory immune checkpoint pathways as a mechanism to evade host immune surveillance) plays a crucial role in the pathogenesis of cancer, including prostate cancer (PC), making CRPC patients suitable candidates for immunotherapy. Therefore, growing interest of anticancer research aims at blocking immune checkpoints (mainly targeting CTLA-4 and PD1/PD-L1 pathways) to restore and enhance cellular-mediated antitumor immunity and achieve durable tumor regression. In this review, we describe the current knowledge regarding the role of immune checkpoints in mediating PC progression, focusing on CTLA-4 and PD1 pathways. We also provide current clinical data available, an update on ongoing trials of immune checkpoint inhibitors in PC. Finally, we discuss the necessity to identify prognostic and predictive biomarkers of immune activity, and we analyze new immune checkpoints with a role as promising targets for PC therapy.


2019 ◽  
Vol 20 (18) ◽  
pp. 4588 ◽  
Author(s):  
Eman A. Taha ◽  
Kisho Ono ◽  
Takanori Eguchi

Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. The concepts of RASP are: (i) releases of ex-HSP and HSP-rich oncosomes are essential in RASP, by which molecular co-transfer of HSPs with oncogenic factors to recipient cells can promote cancer progression and resistance against stresses such as hypoxia, radiation, drugs, and immune systems; (ii) RASP of tumor cells can eject anticancer drugs, targeted therapeutics, and immune checkpoint inhibitors with oncosomes; (iii) cytotoxic lipids can be also released from tumor cells as RASP. ex-HSP and membrane-surface HSP (mHSP) play immunostimulatory roles recognized by CD91+ scavenger receptor expressed by endothelial cells-1 (SREC-1)+ Toll-like receptors (TLRs)+ antigen-presenting cells, leading to antigen cross-presentation and T cell cross-priming, as well as by CD94+ natural killer cells, leading to tumor cytolysis. On the other hand, ex-HSP/CD91 signaling in cancer cells promotes cancer progression. HSPs in body fluids are potential biomarkers detectable by liquid biopsies in cancers and tissue-damaged diseases. HSP-based vaccines, inhibitors, and RNAi therapeutics are also reviewed.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 406
Author(s):  
Quang Loc Bui ◽  
Léo Mas ◽  
Antoine Hollebecque ◽  
David Tougeron ◽  
Christelle de la Fouchardière ◽  
...  

Background: Several studies reported improved outcomes with conventional treatments (CT, i.e., chemotherapy ± targeted therapy) administered after immune checkpoints inhibitors (ICI) in certain tumor types. No data are available concerning patients (pts) with metastatic colorectal cancer (mCRC) harboring mismatch repair deficiency/microsatellite instability (dMMR/MSI). We aimed to assess the outcomes of dMMR/MSI mCRC pts receiving CT after ICI failure. Methods: We conducted a retrospective multicenter study investigating the outcomes of all dMMR/MSI mCRC pts who received post-ICI CT between 2015 and 2020. Results: 31 pts (male 61%, median age 56 years) were included. ICI was an anti-PD(L)1 monotherapy in 71% of pts, and 61% received >2 lines before post-ICI CT. The overall response rate and disease control rate were 13% and 45%, with a median progression-free survival (PFS) and overall survival of 2.9 and 7.4 months, respectively. No association of the outcomes with either ICI efficacy or anti-angiogenic agents was observed. Prolonged PFS (range 16.1–21.3 months) was observed in 4 pts (13%). Conclusions: Although conducted on a limited number of patients, our results do not support an association of previous ICI treatment with an enhanced efficacy of CT in dMMR/MSI mCRC. However, prolonged disease control was observed in several cases, suggesting that some pts might derive an unexpected benefit from post-ICI treatments.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3504
Author(s):  
Silvia Pesce ◽  
Sara Trabanelli ◽  
Clara Di Vito ◽  
Marco Greppi ◽  
Valentina Obino ◽  
...  

Immune checkpoints refer to a plethora of inhibitory pathways of the immune system that play a crucial role in maintaining self-tolerance and in tuning the duration and amplitude of physiological immune responses to minimize collateral tissue damages. The breakdown of this delicate balance leads to pathological conditions, including cancer. Indeed, tumor cells can develop multiple mechanisms to escape from immune system defense, including the activation of immune checkpoint pathways. The development of monoclonal antibodies, targeting inhibitory immune checkpoints, has provided an immense breakthrough in cancer therapy. Immune checkpoint inhibitors (ICI), initially developed to reverse functional exhaustion in T cells, recently emerged as important actors in natural killer (NK)-cell-based immunotherapy. Moreover, the discovery that also helper innate lymphoid cells (ILCs) express inhibitory immune checkpoints, suggests that these molecules might be targeted on ILCs, to modulate their functions in the tumor microenvironment. Recently, other strategies to achieve immune checkpoint blockade have been developed, including miRNA exploiting systems. Herein, we provide an overview of the current knowledge on inhibitory immune checkpoints on NK cells and ILCs and we discuss how to target these innate lymphocytes by ICI in both solid tumors and hematological malignancies.


Breast Care ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Davide Bedognetti ◽  
Cristina Maccalli ◽  
Salha B.J. Al Bader ◽  
Francesco M. Marincola ◽  
Barbara Seliger

Immune checkpoints are crucial for the maintenance of self-tolerance and for the modulation of immune responses in order to minimize tissue damage. Tumor cells take advantage of these mechanisms to evade immune recognition. A significant proportion of tumors, including breast cancers, can express co-inhibitory molecules that are important formediating the escape from T cell-mediated immune surveillance. The interaction of inhibitory receptors with their ligands can be blocked by specific molecules. Monoclonal antibodies (mAbs) directed against the cytotoxic T lymphocyte-associated antigen-4 (CTLA4) and, more recently, against the programmed cell death protein 1 (PD1), have been approved for the therapy of melanoma (anti-CTLA4 and anti-PD1 mAbs) and non-small cell lung cancer (anti-PD1 mAbs). Moreover, inhibition of PD1 signaling has shown extremely promising signs of activity in breast cancer. An increasing number of molecules directed against other immune checkpoints are currently under clinical development. In this review, we summarize the evidence supporting the implementation of checkpoint inhibition in breast cancer by reviewing in detail data on PD-L1 expression and its regulation. In addition, opportunities to boost anti-tumor immunity in breast cancer with checkpoint inhibitor-based immunotherapies alone and in combination with other treatment options will be discussed.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3396
Author(s):  
Lorena Incorvaia ◽  
Daniele Fanale ◽  
Giuseppe Badalamenti ◽  
Chiara Brando ◽  
Marco Bono ◽  
...  

Introduction of checkpoint inhibitors resulted in durable responses and improvements in overall survival in advanced RCC patients, but the treatment efficacy is widely variable, and a considerable number of patients are resistant to PD-1/PD-L1 inhibition. This variability of clinical response makes necessary the discovery of predictive biomarkers for patient selection. Previous findings showed that the epigenetic modifications, including an extensive microRNA-mediated regulation of tumor suppressor genes, are key features of RCC. Based on this biological background, we hypothesized that a miRNA expression profile directly identified in the peripheral lymphocytes of the patients before and after the nivolumab administration could represent a step toward a real-time monitoring of the dynamic changes during cancer evolution and treatment. Interestingly, we found a specific subset of miRNAs, called “lymphocyte miRNA signature”, specifically induced in long-responder patients (CR, PR, or SD to nivolumab >18 months). Focusing on the clinical translational potential of miRNAs in controlling the expression of immune checkpoints, we identified the association between the plasma levels of soluble PD-1/PD-L1 and expression of some lymphocyte miRNAs. These findings could help the development of novel dynamic predictive biomarkers urgently needed to predict the potential response to immunotherapy and to guide clinical decision-making in RCC patients.


2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 191-191
Author(s):  
Tian Zhang ◽  
Rebecca Garland Austin ◽  
Sally E Park ◽  
Daniella Runyambo ◽  
Rengasamy Boominathan ◽  
...  

191 Background: Most immune checkpoint inhibitors have shown limited efficacy in unselected men with mPC, and there is limited understanding about which immune checkpoints (ICs) are relevant in mPC. We evaluated ICs on the cell surface of circulating tumor cells (CTCs) in patients with mPC. Methods: Patients were enrolled prospectively at the Duke Cancer Center in three cohorts: A) mCRPC starting the novel androgen receptor inhibitors abiraterone acetate (AA) or enza with or without sipuleucel-T, B) mCRPC with disease progression after AA or enza, and C) metastatic castration sensitive PC. The Cellsearch platform was used to capture EpCAM- and CK-expressing CTCs and analyzed for PD-L1, PD-L2, B7-H3, and CTLA-4 expression at baseline, 12 weeks, and at further disease progression. Results: Through August 2017, we enrolled 4 subjects in cohort A, 7 in cohort B, and 3 in cohort C. CTCs were detectable in every cohort. At baseline, B7-H3 was the most prevalent IC on a per-patient basis (mean 96% in cohort A, and 100% in cohort B, and 88% in cohort C). PD-L1 was detected less frequently (cohort A mean 8%, cohort B mean 42%, and cohort C mean 67%), with evidence of heterogeneity of CTC PD-L1 expression between and within patients. PD-L1 was expressed on 8% of CTCs in cohort C and cohort A, as compared to 28% of CTCs in cohort B, while CTLA-4 expression was not identified in cohort C, 3% of cohort A, and 15% of cohort B. B7H3 was expressed on 68% of cohort C, 91% of cohort A, and 98% of cohort B. PD-L2 was expressed on 0-7% of CTCs overall. Conclusions: Patients with mPC can have detectable and heterogeneous ICs on CTCs, particularly PD-L1 and B7-H3, and these characteristics can be monitored over time. B7-H3 was the most prevalent IC on CTCs, regardless of disease state. Our preliminary data suggests that men with mCRPC post-enza/AA have higher levels of PD-L1 and CTLA-4 expression on their CTCs as compared with men with mHSPC and mCRPC prior to enza/AA. Patient enrollment and analysis are ongoing.


2021 ◽  
Vol 20 (4) ◽  
pp. 191-198
Author(s):  
E. M. Koltsova ◽  
G. S. Svidelskaya ◽  
Yu. A. Shifrin ◽  
F. I. Ataullakhanov

Malignant neoplasms are characterized by the presence of the hemostasis system pathology, predisposing cancer patients to thrombohemorrhagic complications. The pathogenesis of cancer-associated coagulopathy is complex and involves a variety of mechanisms. Tumor cells have the ability to activate the host’s hemostasis system, and this phenomenon is controlled by the same oncogenes that are responsible for neoplastic transformation. In addition to predisposing factors to impaired hemostasis from the side of the disease, the anticancer drugs themselves carry risks of developing coagulation disorders. The pathophysiological basis of this kind of disorders caused by chemotherapy is associated with damage to the endothelium, imbalance of coagulation and anticoagulant proteins, platelet dysfunction and their deficiency. In this article, the authors set themselves the goal of generalizing and updating the current knowledge of the molecular mechanisms that cause thrombohemorrhagic risk in cancer. 


2020 ◽  
Vol 19 ◽  
pp. 153303382094748
Author(s):  
Xinlun Dai ◽  
Shupeng Wang ◽  
Chunyuan Niu ◽  
Bai Ji ◽  
Yahui Liu

Hepatocellular carcinoma (HCC) remains to a common cause of tumor mortality worldwide and represents the most common type of lethal hepatic malignancy. The incidence of HCC is swiftly increasing in western countries and southeast Asia. Despite poor prognosis, traditional treatments for advanced HCC appear to be minimally effective or even useless since patients are usually diagnosed in the advanced stage of disease. In recent years, immune checkpoint blockade has shown promising results in multiple pre-clinical and clinical trials of different solid tumors, including advanced HCC. Novel drugs targeting immune checkpoints, such as nivolumab (anti-PD-1), durvalumab (anti-PD-L1), and tremelimumab (anti-CTLA-4) have been shown to be highly effective and relatively safe in monotherapy or in combination treatment of advanced liver cancer. Unlike other immunotherapies, this approach can rouse human anti-tumor immunity by relieving T-cell exhaustion and inhibiting the evasion of HCC by blocking co-inhibitory signaling transduction accurately. In this review, we will provide current knowledge of several major immune checkpoints and summarize recent data from clinical trials that applied immune checkpoint inhibitors alone or in combination. In addition, this review will discuss the limitations and future prospective of immune checkpoint-targeted therapy for advanced HCC.


Sign in / Sign up

Export Citation Format

Share Document