scholarly journals Benzoxazine Copolymers with Mono- and Difunctional Epoxy Active Diluents with Enhanced Tackiness and Reduced Viscosity

2021 ◽  
Vol 5 (9) ◽  
pp. 250
Author(s):  
Natalia V. Bornosuz ◽  
Roman F. Korotkov ◽  
Vyacheslav V. Shutov ◽  
Igor S. Sirotin ◽  
Irina Yu. Gorbunova

The influence of epoxy active diluents, 1,4-butanediol diglycidyl ether (BD) and furfuryl glycidyl ether (FUR), in the mixtures with benzoxazine monomer based on bisphenol A, formaldehyde and m-toluidine (BA-mt), on the properties of a matrix was disclosed in this work. Resins were modified to achieve good tackiness at room temperature and reduced viscosity. The influence of mono- and difunctional modifiers on the process of curing was studied by way of differential scanning calorimetry and oscillatory rheology. The addition of BD and FUR shifted the curing peak to higher temperatures and significantly reduced viscosity. Preferable tackiness at ambient temperature was achieved with 10 phr of epoxy components in mixtures. However, cured blends with difunctional epoxy BD had an advantage over monofunctional FUR in enhanced tensile strength with remaining glass transition temperature at the level of neat benzoxazine (217 °C).

2014 ◽  
Vol 651-653 ◽  
pp. 107-110
Author(s):  
Nai Yan Zhang ◽  
Jun Liu

In this paper, a series of semi-interpenetrating polymer network materials based on poly ((2-dimethylamino) ethyl methacrylate)/poly (N, N-diethylacrylamide) (PDMAEMA/PDEA) were synthesized at room temperature. The influence of this additive on the property of resulting PDEA materials was investigated and characterized. The glass transition temperature (Tg) of the semi-IPN materials was observed by Differential Scanning Calorimetry (DSC). Compared to PDEA, the semi-IPN materials exhibited excellent mutative values in response to an alternation of the temperature, and showed fast swelling and deswelling rates in response to temperature change, which suggests that these materials have potential application as thermal infrared camouflage materials.


2013 ◽  
Vol 9 ◽  
pp. 2803-2811 ◽  
Author(s):  
Julian Fischer ◽  
Helmut Ritter

2-Amino-N-isopropylacetamide and α-amino-ε-caprolactam were reacted with glycerol diglycidyl ether to give novel oligomeric thermoresponsive epoxide–amine adducts. These oligomers exhibit a lower critical solution temperature (LCST) behavior in water. The solubility properties were influenced with randomly methylated β-cyclodextrin (RAMEB-CD) and the curing properties of the amine–epoxide mixtures were analyzed by oscillatory rheology and differential scanning calorimetry, whereby significant differences in setting time, viscosity, and stiffness were observed.


2013 ◽  
Vol 747 ◽  
pp. 157-161
Author(s):  
S. Kamthai ◽  
Rathanawan Magaraphan

According to the availability of bagasse waste and increasing environmental concern, this research is focused on the preparation of polylactic acid (PLA)/bagasse carboxymethyl cellulose (CMCB) composite in order to improve the thermal and mechanical properties of PLA/CMCB film. PLA were mixed with CMCB at different ratios (1, 2, 4 and 8%, w/w of PLA), by kneading in two roll mills and then hot pressing into film. The results revealed that the addition of CMCB had significant effects on PLA composites properties. Differential scanning calorimetry (DSC) measurement indicated that the presence of CMCB accelerated the reduction of glass transition, and melting temperatures. Moreover the CMCB could improve the storage modulus of PLA composites at high temperature because its cold crystallization was developed. At room temperature, the tensile strength and elongation of PLA composite (but not modulus) were not significantly different with an increase of CMCB contents.


2020 ◽  
Vol 57 (1) ◽  
pp. 80-85
Author(s):  
Leandro Iorio ◽  
Loredana Santo ◽  
Fabrizio Quadrin ◽  
Denise Bellisario ◽  
David Benedetti ◽  
...  

Carbon fibre reinforced (CFR) laminates were manufactured by prepreg lay-up and deposition of interlaminar carbon nanotubes (CNTs). An easy and innovative manufacturing procedure was used. CNTs were separated in solvent by ultrasonication, and poured on the woven fabric prepreg. Solvent evacuation was performed at low temperature, and dry functionalized prepregs were used for composite lamination. Laminates were cured by compression moulding on a heating plate. Peeling tests, differential scanning calorimetry (DSC), and dynamic mechanical analyses (DMA) were carried out on multiply samples with and without 1 wt% of interlaminar CNTs. Results show that the glass transition temperature of the resin matrix reduces because of the interaction with CNTs. Nevertheless, peeling strength shows 10% increase at room temperature.


2012 ◽  
Vol 31 (5) ◽  
pp. 295-302 ◽  
Author(s):  
Lessa K. Grunenfelder ◽  
Steven R. Nutt

Fabrication of composite parts from prepregs often requires layup and preparation times of days and even weeks, during which prepregs undergo room-temperature aging. The aging process can compromise compaction, tack, and overall quality of composite parts, and thus a need exists for an accurate and convenient method to monitor the extent of prepreg aging as a function of out-time. Here, we report a method to monitor prepreg age, which involves measurement of changes in glass transition temperature as a function of room-temperature aging time. Samples from three out-of-autoclave prepreg systems were aged in ambient conditions and tested periodically using modulated differential scanning calorimetry. A linear increase in glass transition temperature with prepreg age was noted. Results are discussed in the context of monitoring the chemical aging of epoxy resins that occurs at ambient temperature.


1987 ◽  
Vol 2 (4) ◽  
pp. 461-470 ◽  
Author(s):  
P. T. Vianco ◽  
J. C. M. Li

The low-temperature (120°–245°C) structural relaxation of Metglas¯ 2826B (Ni49Fe29P14B6Si2) amorphous alloy was investigated for samples subjected to a tensile stress in the range of 20–400 MPa during annealing. The stress-annealed samples demonstrated a much smaller increase of microhardness than was observed in similarly annealed ribbons without a stress. Further heat treatment of the stress-annealed specimens, this time without the stress, was capable of increasing the microhardnesses of only some ribbons to values equal to those of samples similarly heat treated initially without a stress. An additional exothermic peak in the differential scanning calorimetry (DSC) thermograms of the stress-annealed specimens indicated the presence of a more disordered structure at room temperature, which was found to correlate with the lower microhardness values. Otherwise, those artifacts of the DSC thermograms that were characteristic of samples annealed without a stress were still present in the stress-annealed ribbons. No effect on the crystallization temperature was noted but the glass transition temperature was increased in the stress-annealed case with respect to values attained when the stress was absent during heat treatment. A reduction in the degree of embrittlement of those samples annealed with a tensile stress was a further indication of more disorder in the stress-annealed ribbons.


Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S173
Author(s):  
C. Jones ◽  
J. Heimfeld ◽  
B.J. Hawkins ◽  
R. Marcu

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Sign in / Sign up

Export Citation Format

Share Document