Influence of Bagasse Carboxymethyl Cellulose Addition on the Thermal and Mechanical Properties of PLA Composites

2013 ◽  
Vol 747 ◽  
pp. 157-161
Author(s):  
S. Kamthai ◽  
Rathanawan Magaraphan

According to the availability of bagasse waste and increasing environmental concern, this research is focused on the preparation of polylactic acid (PLA)/bagasse carboxymethyl cellulose (CMCB) composite in order to improve the thermal and mechanical properties of PLA/CMCB film. PLA were mixed with CMCB at different ratios (1, 2, 4 and 8%, w/w of PLA), by kneading in two roll mills and then hot pressing into film. The results revealed that the addition of CMCB had significant effects on PLA composites properties. Differential scanning calorimetry (DSC) measurement indicated that the presence of CMCB accelerated the reduction of glass transition, and melting temperatures. Moreover the CMCB could improve the storage modulus of PLA composites at high temperature because its cold crystallization was developed. At room temperature, the tensile strength and elongation of PLA composite (but not modulus) were not significantly different with an increase of CMCB contents.

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Wenzhi Wang ◽  
Ruixue Li ◽  
Baoyu Liu ◽  
Yonghua Zhang

AbstractLong chain semiaromatic polyamides were synthesized by the reactions of decanediamine with various aromatic diacids, and characterized by Fourier transform infrared spectrum (FT-IR) and nuclear magnetic resonance (1H-NMR). The thermal behaviours were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The solubility, dynamic mechanical, physical and mechanical properties of the polyamides were also investigated. The resultant polyamides have intrinsic viscosity ranging from 1.7 dL/g to 2.1 dL/g. Their melting temperatures range from 305 °C to 343 °C, and the glass transition temperatures fall in the range of 125 °C - 130 °C. The tensile strength of the polyamides is above 100 MPa.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1101 ◽  
Author(s):  
Przybysz ◽  
Hejna ◽  
Haponiuk ◽  
Formela

The modification of poly(ε-caprolactone) (PCL) was successfully conducted during reactive processing in the presence of dicumyl peroxide (DCP) or di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB). The peroxide initiators were applied in the various amounts of 0.5 or 1.0 pbw (part by weight) into the PCL matrix. The effects of the initiator type and its concentration on the structure and mechanical and thermal properties of PCL were investigated. To achieve a detailed and proper explication of this phenomenon, the decomposition and melting temperatures of DCP and BIB initiators were measured by differential scanning calorimetry. The conjecture of the branching or cross-linking of PCL structure via used peroxides was studied by gel fraction content measurement. Modification in the presence of BIB in PCL was found to effectively increase gel fraction. The result showed that the cross-linking of PCL started at a low content of BIB, while PCL modified by high DCP content was only partially cross-linked or branched. PCL branching and cross-linking were found to have a significant impact on the mechanical properties of PCL. However, the effect of used initiators on poly(ε-caprolactone) properties strongly depended on their structure and content. The obtained results indicated that, for the modification towards cross-linking/branching of PCL structure by using organic peroxides, the best mechanical properties were achieved for PCL modified by 0.5 pbw BIB or 1.0 pbw DCP, while the PCL modified by 1.0 pbw BIB possessed poor mechanical properties, as it was related to over cross-linking.


1986 ◽  
Vol 76 ◽  
Author(s):  
C. W. Wilkins ◽  
H. E. Bair ◽  
M. G. Chan ◽  
R. S. Hutton

ABSTRACTWe have studied some of the physical and mechanical properties of cyclized polybutadiene (CBR) dielectrics by dynamic mechanical analysis, thermal mechanical analysis, thermogravimetry, infrared analysis, and differential scanning calorimetry. Of interest is the difference in properties between thin (<30 μm) films which have been cured under vacuum and those which have been cured in air. Our results indicate that curing under vacuum prevents oxidation and reduces crosslinking. Vacuum cured films have 20% smaller moduli and 200 lower glass transition temperature than do films produced in air.


2016 ◽  
Vol 721 ◽  
pp. 23-27 ◽  
Author(s):  
Ilya Kobykhno ◽  
Oleg Tolochko ◽  
Ekaterina Vasilyeva ◽  
Andrei Didenko ◽  
Danila Kuznetcov ◽  
...  

The paper experimentally studies the effect of meta and para- substitution of the amino groups in the diamine used in the synthesis of multiblock copolymers. The way for synthesis of new multiblock copolymers with the possibility of replacing the diamine in the polymer structure was shown. Thermal and mechanical properties of synthesized copolymers had been characterized by means of differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical thermal analysis and by nanoindentation and tensile test.


2012 ◽  
Vol 624 ◽  
pp. 264-268 ◽  
Author(s):  
Duo You Zhang ◽  
Peng Liu ◽  
Chun Fa Ouyoung ◽  
Qun Gao ◽  
Kang Sheng Zheng ◽  
...  

PNA012 is a new nucleating agent on polybutylene terephthalate. The effect of different dosage of PNA012 on crystallization and mechanical properties were investigated by means of differential scanning calorimetry, universal testing machine, melt flow indexer and vicat softening testing machine. It was revealed that the PNA012 could substantially accelerate the crystallization of PBT. Compared with the pure PBT,the crystallization temperature of PBT/PNA012 rises from 196.3 °C to 199.7 °C and crystallization degree from 34.2% to 39.9%. The tensile Strength of PBT/PNA012 is increased 9.7%. The Bending Strength has a rise of 9.3% and the heat distortion temperatures of PBT/PNA012 is increased from 115.07°C to 125.94°C.


2003 ◽  
Vol 767 ◽  
Author(s):  
A. Tregub ◽  
G. Ng ◽  
M. Moinpour

AbstractSoak of polyurethane-based CMP pads in tungsten slurry and de-ionized water and its effect on retention of thermal and mechanical properties of the pads was studied using Dynamic Mechanical Analysis (DMA), Thermal Mechanical Analysis (TMA), Thermal Gravimetric Analysis (TGA), and Modulated Differential Scanning Calorimetry (MDSC). Simultaneous cross-linking and plastisizing due to soak were established using DMA and MDSC analysis. The stable operating temperature range and its dependence on soak time were determined using TMA analysis. Substantial difference in diffusion behavior of the “soft” and “hard” pads was discovered: diffusion into the hard pads followed Fickian law [1], while diffusion into the multi-layer soft pads was dominated by the fast filling of the highly porous pad surface with liquid.During a traditional CMP process, which involves application of polishing pads and slurry, the pad properties can be substantially and irreversibly changed as the result of slurry/rinse water absorption.The retention of the pad properties after exposure was monitored using such thermal and mechanical techniques, as Thermal Mechanical Analysis (TMA), Dynamical Mechanical Analysis (DMA), Modulated Differential Scanning Calorimetry (MDSC), Thermal Gravimetric Analysis (TGA).


2014 ◽  
Vol 915-916 ◽  
pp. 751-754
Author(s):  
Shao Hui Wang

The composites of PP/Talc modified by stearic acid were prepared and its effect on the properties of PP/Talc composites was investigated in this paper. The tensile strength and impact strength of PP/Talc composites increased about 15% and 30% compared with pure PP respectively. Based on surface analysis by scanning electron microscope (SEM), the Talcparticles buried well in PP matrix when the Talc was coated with the stearic acid. At the same time, it was found that Talc significantly increased the crystallization temperature and crystallization rate of PP by differential scanning calorimetry (DSC).


1999 ◽  
Vol 11 (4) ◽  
pp. 258-262
Author(s):  
Seiji Shimizu ◽  
◽  
Katsutoshi Kuribayashi

We studied the transformation and mechanical properties of Ti- 54.8-51.6 at % Ni shape memory alloy thin film actuators sputter-deposited at different argon pressures of 0.47-3.4 Pa. The higher the argon pressure, the lower the nickel composition. TiNi thin films were crystallized at 800C for 10min, aged at 400C for 6h, and analyzed by differential scanning calorimetry and tensile tests. All films showed 2-step transformation of martensite, R, and austenite phases. The maximum generative stress of 365MPa was obtained when the TiNi thin film actuator deposited at 2.0Pa was heated electrically to 30A/mm2 after deformation of 3.0% at room temperature.


2007 ◽  
Vol 539-543 ◽  
pp. 1926-1931 ◽  
Author(s):  
T.H. Hung ◽  
Y.C. Chang ◽  
H.M. Chen ◽  
Y.L. Tsai ◽  
J.C. Huang ◽  
...  

The thermal and mechanical characteristics of various Mg-Cu(Ni)-Y(Gd) metallic glassy alloys prepared by melt spinning are examined using differential scanning calorimetry (DSC), thermomechanical analyzer (TMA), and instrumental nanoindenter. The replacement of Y by Gd appears to benefit both the thermal and mechanical properties, while the replacement of Cu by Ni improves only the hardness and modulus, with the sacrifice of thermal characteristics. The amorphous Mg-Cu-Gd based alloys can be fabricated into rods with a diameter greater than 6 mm, with minimum porosity and reasonable toughness.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6850
Author(s):  
Sucia Okta Handika ◽  
Muhammad Adly Rahandi Lubis ◽  
Rita Kartika Sari ◽  
Raden Permana Budi Laksana ◽  
Petar Antov ◽  
...  

In this study, lignin isolated and fractionated from black liquor was used as a pre-polymer to prepare bio-polyurethane (Bio-PU) resin, and the resin was impregnated into ramie fiber (Boehmeria nivea (L.) Gaudich) to improve its thermal and mechanical properties. The isolated lignin was fractionated by one-step fractionation using two different solvents, i.e., methanol (MeOH) and acetone (Ac). Each fractionated lignin was dissolved in NaOH and then reacted with a polymeric 4,4-methane diphenyl diisocyanate (pMDI) polymer at an NCO/OH mole ratio of 0.3. The resulting Bio-PU was then used in the impregnation of ramie fiber. The characterization of lignin, Bio-PU, and ramie fiber was carried out using several techniques, i.e., Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), pyrolysis-gas-chromatography-mass-spectroscopy (Py-GCMS), Micro Confocal Raman spectroscopy, and an evaluation of fiber mechanical properties (modulus of elasticity and tensile strength). Impregnation of Bio-PU into ramie fiber resulted in weight gain ranging from 6% to 15%, and the values increased when extending the impregnation time. The reaction between the NCO group on Bio-PU and the OH group on ramie fiber forms a C=O group of urethane as confirmed by FTIR and Micro Confocal Raman spectroscopies at a wavenumber of 1600 cm−1. Based on the TGA analysis, ramie fiber with lignin-based Bio-PU had better thermal properties than ramie fiber before impregnation with a greater weight residue of 21.7%. The mechanical properties of ramie fiber also increased after impregnation with lignin-based Bio-PU, resulting in a modulus of elasticity of 31 GPa for ramie-L-isolated and a tensile strength of 577 MPa for ramie-L-Ac. The enhanced thermal and mechanical properties of impregnated ramie fiber with lignin-based Bio-PU resins could increase the added value of ramie fiber and enhance its more comprehensive industrial application as a functional material.


Sign in / Sign up

Export Citation Format

Share Document