scholarly journals Integrating Soft Hydrogel with Nanostructures Reinforces Stem Cell Adhesion and Differentiation

2022 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Bohan Yin ◽  
Hongrong Yang ◽  
Mo Yang

Biophysical cues can regulate stem cell behaviours and have been considered as critical parameters of synthetic biomaterials for tissue engineering. In particular, hydrogels have been utilized as promising biomimetic and biocompatible materials to emulate the microenvironment. Therefore, well-defined mechanical properties of a hydrogel are important to direct desirable phenotypes of cells. Yet, limited research pays attention to engineering soft hydrogel with improved cell adhesive property, which is crucial for stem cell differentiation. Herein, we introduce silica nanoparticles (SiO2 NPs) onto the surface of methacrylated hyaluronic (MeHA) hydrogel to manipulate the presentation of cell adhesive ligands (RGD) clusters, while remaining similar bulk mechanical properties (2.79 ± 0.31 kPa) to that of MeHA hydrogel (3.08 ± 0.68 kPa). RGD peptides are either randomly decorated in the MeHA hydrogel network or on the immobilized SiO2 NPs (forming MeHA–SiO2). Our results showed that human mesenchymal stem cells exhibited a ~1.3-fold increase in the percentage of initial cell attachment, a ~2-fold increase in cell spreading area, and enhanced expressions of early-stage osteogenic markers (RUNX2 and alkaline phosphatase) for cells undergoing osteogenic differentiation with the osteogenic medium on MeHA–SiO2 hydrogel, compared to those cultured on MeHA hydrogel. Importantly, the cells cultivated on MeHA–SiO2 expressed a ~5-fold increase in nuclear localization ratio of the yes-associated protein, which is known to be mechanosensory in stem cells, compared to the cells cultured on MeHA hydrogel, thereby promoting osteogenic differentiation of stem cells. These findings demonstrate the potential use of nanomaterials into a soft polymeric matrix for enhanced cell adhesion and provide valuable guidance for the rational design of biomaterials for implantation.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 668 ◽  
Author(s):  
Hadi Hashemzadeh ◽  
Abdollah Allahverdi ◽  
Mosslim Sedghi ◽  
Zahra Vaezi ◽  
Tahereh Tohidi Moghadam ◽  
...  

Microfluidics cell-based assays require strong cell-substrate adhesion for cell viability, proliferation, and differentiation. The intrinsic properties of PDMS, a commonly used polymer in microfluidics systems, regarding cell-substrate interactions have limited its application for microfluidics cell-based assays. Various attempts by previous researchers, such as chemical modification, plasma-treatment, and protein-coating of PDMS revealed some improvements. These strategies are often reversible, time-consuming, short-lived with either cell aggregates formation, not cost-effective as well as not user- and eco-friendly too. To address these challenges, cell-surface interaction has been tuned by the modification of PDMS doped with different biocompatible nanomaterials. Gold nanowires (AuNWs), superparamagnetic iron oxide nanoparticles (SPIONs), graphene oxide sheets (GO), and graphene quantum dot (GQD) have already been coupled to PDMS as an alternative biomaterial enabling easy and straightforward integration during microfluidic fabrication. The synthesized nanoparticles were characterized by corresponding methods. Physical cues of the nanostructured substrates such as Young’s modulus, surface roughness, and nanotopology have been carried out using atomic force microscopy (AFM). Initial biocompatibility assessment of the nanocomposites using human amniotic mesenchymal stem cells (hAMSCs) showed comparable cell viabilities among all nanostructured PDMS composites. Finally, osteogenic stem cell differentiation demonstrated an improved differentiation rate inside microfluidic devices. The results revealed that the presence of nanomaterials affected a 5- to 10-fold increase in surface roughness. In addition, the results showed enhancement of cell proliferation from 30% (pristine PDMS) to 85% (nano-modified scaffolds containing AuNWs and SPIONs), calcification from 60% (pristine PDMS) to 95% (PDMS/AuNWs), and cell surface marker expression from 40% in PDMS to 77% in SPION- and AuNWs-PDMS scaffolds at 14 day. Our results suggest that nanostructured composites have a very high potential for stem cell studies and future therapies.


2021 ◽  
Vol 50 (1) ◽  
pp. 239-251
Author(s):  
Kim Shyong Siow ◽  
Arifah Rahman ◽  
Amnani Aminuddin ◽  
Pei Yuen Ng

The role of sulfur and its synergistic effects with nitrogen moieties in mediating stem cell proliferation and differentiation has become of interest to the tissue engineering community due to chemical similarities with the glycosaminoglycans found in human tissues and cells. Glycosaminoglycans are biomolecules known to influence stem cell differentiation, but the roles of sulfur with different oxidation states on nitrogen-containing polymers have not been fully understood nor investigated. In this study, we used the plasma polymerization of 1,7-octadiene (ppOD), n-heptylamine (ppHA), ppHA grafted with vinyl-sulfonate via Michael-type addition (ppHA-SO3), thiophene (ppT), and ppT with air plasma treatment (ppT-air) to produce controlled amounts of nitrogen and sulfur moieties having different oxidation states, as confirmed by x-ray photoelectron spectroscopy. Assays of the proliferation and osteogenic activities of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) showed the highest activities for ppHA, followed by ppHA-SO3, due to high percentages of amines/amides and the absence of SO3 moieties in ppHA. Other plasma polymers showed less proliferation and osteogenic differentiation than the positive control (glass substrate); however, WJ-MSCs grown on ppT-air with its high percentages of SO4 displayed cytoskeletons intensified with actin stress fiber, unlike the thiol-dominated ppT. Finally, the presence of methyl groups in ppOD severely limited WJ-MSCs proliferation and differentiation. Overall, these results confirm the beneficial effects of amine/amide groups on WJ-MSCs proliferation and osteogenic differentiation, but the combination of these groups with sulfur of various oxidation states failed to further enhance such cellular activities.


Author(s):  
Gary A. Monteiro ◽  
David I. Shreiber

The long-term objective of this research is to develop tunable collagen-based biomaterial scaffolds for directed stem cell differentiation into neural lineages to aid in CNS diseases and trauma. Type I collagen is a ubiquitous protein that provides mechanostructural and ligand-induced biochemical cues to cells that attach to the protein via integrin receptors. Previous studies have demonstrated that the mechanical properties of a substrate or tissue can be an important regulator of stem cell differentiation. For example, the mechanical properties polyacrylamide gels can be tuned to induce neural differentiation from stem cells [1, 2]. Mesenchymal stem cells (MSCs) cultured on ployacrylamide gels with low elastic modulus (0.1–1 kPa) resulted in a neural like population. MSCs on 10-fold stiffer matrices that mimic striated muscle elasticity (Emuscle ∼8–17 kPa) lead to spindle-shaped cells similar in shape to myoblasts. Still stiffer gels (25–40 kPa) resulted in osetoblast differentiation. Based on these observations, collagen gels may provide an ideal material for differentiation into neural lineages because of their low compliance.


2021 ◽  
Vol 55 (3) ◽  
pp. 311-326

Background/Aims: The skeleton is a metabolically active organ undergoing continuous remodelling initiated by mesenchymal progenitors present in bone and bone marrow. Under certain pathological conditions this remodelling balance shifts towards increased resorption resulting in weaker bone microarchitecture, and there is consequently a therapeutic need to identify pathways that could inversely enhance bone formation from stem cells. Metabolomics approaches recently applied to stem cell characterisation could help identify new biochemical markers involved in osteogenic differentiation. Methods: Combined intra- and extracellular metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS) on human mesenchymal stem cells (MSCs) undergoing osteogenic differentiation in vitro. Using a combination of univariate and multivariate analyses, changes in metabolite and nutrient concentration were monitored in cultures under osteogenic treatment over 10 days. Results: A subset of differentially detected compounds was identified in differentiating cells, suggesting a direct link to metabolic processes involved in osteogenic response. Conclusion: These results highlight new metabolite candidates as potential biomarkers to monitor stem cell differentiation towards the bone lineage.


2020 ◽  
Vol 8 (9) ◽  
pp. 2638-2652 ◽  
Author(s):  
Liangliang Yang ◽  
Qi Gao ◽  
Lu Ge ◽  
Qihui Zhou ◽  
Eliza M. Warszawik ◽  
...  

Topography-driven alterations to single cell stiffness rather than alterations in cell morphology, is the underlying driver for influencing cell biological processes, particularly stem cell differentiation.


2021 ◽  
Vol 22 (10) ◽  
pp. 5215
Author(s):  
Summer Helmi ◽  
Leili Rohani ◽  
Ahmed Zaher ◽  
Youssry El Hawary ◽  
Derrick Rancourt

Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt’s lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260760
Author(s):  
Bo-Hyun Park ◽  
Eui-Seung Jeong ◽  
Sujin Lee ◽  
Jun-Hyeog Jang

Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.


Author(s):  
Hongxu Meng ◽  
Tina T. Chowdhury ◽  
Núria Gavara

Traditional methods to assess hMSCs differentiation typically require long-term culture until cells show marked expression of histological markers such as lipid accumulation inside the cytoplasm or mineral deposition onto the surrounding matrix. In parallel, stem cell differentiation has been shown to involve the reorganization of the cell’s cytoskeleton shortly after differentiation induced by soluble factors. Given the cytoskeleton’s role in determining the mechanical properties of adherent cells, the mechanical characterization of stem cells could thus be a potential tool to assess cellular commitment at much earlier time points. In this study, we measured the mechanical properties of hMSCs cultured on soft gelatin-based hydrogels at multiple time points after differentiation induction toward adipogenic or osteogenic lineages. Our results show that the mechanical properties of cells (stiffness and viscosity) and the organization of the actin cytoskeleton are highly correlated with lineage commitment. Most importantly, we also found that the mechanical properties and the topography of the gelatin substrate in the vicinity of the cells are also altered as differentiation progresses toward the osteogenic lineage, but not on the adipogenic case. Together, these results confirm the biophysical changes associated with stem cell differentiation and suggest a mechanical interplay between the differentiating stem cells and their surrounding extracellular matrix.


Nanoscale ◽  
2020 ◽  
Vol 12 (35) ◽  
pp. 18305-18312 ◽  
Author(s):  
Ruitong Zhang ◽  
Shuwei Han ◽  
Na Ren ◽  
Linlin Liang ◽  
Na Liang ◽  
...  

A novel plant-derived material as scaffolds that can promote the osteogenic differentiation of human adipose-derived stem cells is reported.


2019 ◽  
Vol 51 (8) ◽  
pp. 856-863
Author(s):  
Sujin Lee ◽  
Ji-Eun Kim ◽  
Hye-Jin Seo ◽  
Jun-Hyeog Jang

Abstract Extracellular matrix (ECM) including fibronectin (FN) and elastin plays a pivotal role in providing a microenvironment to support tissue regeneration in stem cell therapy. To develop a novel biomimetic ECM for stem cell differentiation, we engineered FN type III 9 and 10 domains fused to elastin-like polypeptides (FN-ELPs). The recombinant FN-ELP fusion protein was expressed in Escherichia coli and purified by inverse transition cycling. Human mesenchymal stem cells (hMSCs) cultured on plates coated with FN-ELP had significantly greater adhesion activity and proliferation than cells grown on non-coated plates. FN-ELP induced the osteogenic differentiation by elevating alkaline phosphatase (ALP) and mineralization activity of hMSCs. Furthermore, the osteogenic marker gene expressions of ALP, collagen type I (Col I), osteopontin (OPN), and transcriptional coactivator with a PDZ-binding motif (TAZ) were increased in hMSCs cultured on plates coated with FN-ELP. We reported a novel biomimetic ECM with potential for bone regeneration that promotes the osteogenic differentiation of hMSCs.


Sign in / Sign up

Export Citation Format

Share Document