scholarly journals Tracking with (Un)Certainty

2020 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Abe D. Hofman ◽  
Matthieu J. S. Brinkhuis ◽  
Maria Bolsinova ◽  
Jonathan Klaiber ◽  
Gunter Maris ◽  
...  

One of the highest ambitions in educational technology is the move towards personalized learning. To this end, computerized adaptive learning (CAL) systems are developed. A popular method to track the development of student ability and item difficulty, in CAL systems, is the Elo Rating System (ERS). The ERS allows for dynamic model parameters by updating key parameters after every response. However, drawbacks of the ERS are that it does not provide standard errors and that it results in rating variance inflation. We identify three statistical issues responsible for both of these drawbacks. To solve these issues we introduce a new tracking system based on urns, where every person and item is represented by an urn filled with a combination of green and red marbles. Urns are updated, by an exchange of marbles after each response, such that the proportions of green marbles represent estimates of person ability or item difficulty. A main advantage of this approach is that the standard errors are known, hence the method allows for statistical inference, such as testing for learning effects. We highlight features of the Urnings algorithm and compare it to the popular ERS in a simulation study and in an empirical data example from a large-scale CAL application.

1987 ◽  
Vol 24 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Emin Babakus ◽  
Carl E. Ferguson ◽  
Karl G. Jöreskog

A large-scale simulation design was used to study the sensitivity of maximum likelihood (ML) factor analysis to violations of measurement scale and distributional assumptions in the input data. Product-moment, polychoric. Spearman's rho, and Kendall's tau- b correlations computed from ordinal data were used to estimate a single-factor model. The resulting ML estimates were compared on the bases of convergence rates and improper solutions, accuracy of the loading estimates, fit statistics, and estimated standard errors. The LISREL maximum likelihood solution algorithm was used to estimate model parameters. The polychoric correlation procedure was found to provide the most accurate estimates of pairwise correlations and factor loadings but performed worst on all goodness-of-fit criteria. LISREL overestimated all standard errors, thus not reflecting the effects of standardization as previously assumed. When the data were categorized, the polychoric correlations led to the best estimates of the standard errors.


Author(s):  
Carlos Lago-Peñas ◽  
Anton Kalén ◽  
Miguel Lorenzo-Martinez ◽  
Roberto López-Del Campo ◽  
Ricardo Resta ◽  
...  

This study aimed to evaluate the effects playing position, match location (home or away), quality of opposition (strong or weak), effective playing time (total time minus stoppages), and score-line on physical match performance in professional soccer players using a large-scale analysis. A total of 10,739 individual match observations of outfield players competing in the Spanish La Liga during the 2018–2019 season were recorded using a computerized tracking system (TRACAB, Chyronhego, New York, USA). The players were classified into five positions (central defenders, players = 94; external defenders, players = 82; central midfielders, players = 101; external midfielders, players = 72; and forwards, players = 67) and the following match running performance categories were considered: total distance covered, low-speed running (LSR) distance (0–14 km · h−1), medium-speed running (MSR) distance (14–21 km · h−1), high-speed running (HSR) distance (>21 km · h−1), very HSR (VHSR) distance (21–24 km · h−1), sprint distance (>24 km · h−1) Overall, match running performance was highly dependent on situational variables, especially the score-line condition (winning, drawing, losing). Moreover, the score-line affected players running performance differently depending on their playing position. Losing status increased the total distance and the distance covered at MSR, HSR, VHSR and Sprint by defenders, while attacking players showed the opposite trend. These findings may help coaches and managers to better understand the effects of situational variables on physical performance in La Liga and could be used to develop a model for predicting the physical activity profile in competition.


2021 ◽  
Vol 11 (13) ◽  
pp. 6048
Author(s):  
Jaroslav Melesko ◽  
Simona Ramanauskaite

Feedback is a crucial component of effective, personalized learning, and is usually provided through formative assessment. Introducing formative assessment into a classroom can be challenging because of test creation complexity and the need to provide time for assessment. The newly proposed formative assessment algorithm uses multivariate Elo rating and multi-armed bandit approaches to solve these challenges. In the case study involving 106 students of the Cloud Computing course, the algorithm shows double learning path recommendation precision compared to classical test theory based assessment methods. The algorithm usage approaches item response theory benchmark precision with greatly reduced quiz length without the need for item difficulty calibration.


Author(s):  
Clemens M. Lechner ◽  
Nivedita Bhaktha ◽  
Katharina Groskurth ◽  
Matthias Bluemke

AbstractMeasures of cognitive or socio-emotional skills from large-scale assessments surveys (LSAS) are often based on advanced statistical models and scoring techniques unfamiliar to applied researchers. Consequently, applied researchers working with data from LSAS may be uncertain about the assumptions and computational details of these statistical models and scoring techniques and about how to best incorporate the resulting skill measures in secondary analyses. The present paper is intended as a primer for applied researchers. After a brief introduction to the key properties of skill assessments, we give an overview over the three principal methods with which secondary analysts can incorporate skill measures from LSAS in their analyses: (1) as test scores (i.e., point estimates of individual ability), (2) through structural equation modeling (SEM), and (3) in the form of plausible values (PVs). We discuss the advantages and disadvantages of each method based on three criteria: fallibility (i.e., control for measurement error and unbiasedness), usability (i.e., ease of use in secondary analyses), and immutability (i.e., consistency of test scores, PVs, or measurement model parameters across different analyses and analysts). We show that although none of the methods are optimal under all criteria, methods that result in a single point estimate of each respondent’s ability (i.e., all types of “test scores”) are rarely optimal for research purposes. Instead, approaches that avoid or correct for measurement error—especially PV methodology—stand out as the method of choice. We conclude with practical recommendations for secondary analysts and data-producing organizations.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4638
Author(s):  
Simon Pratschner ◽  
Pavel Skopec ◽  
Jan Hrdlicka ◽  
Franz Winter

A revolution of the global energy industry is without an alternative to solving the climate crisis. However, renewable energy sources typically show significant seasonal and daily fluctuations. This paper provides a system concept model of a decentralized power-to-green methanol plant consisting of a biomass heating plant with a thermal input of 20 MWth. (oxyfuel or air mode), a CO2 processing unit (DeOxo reactor or MEA absorption), an alkaline electrolyzer, a methanol synthesis unit, an air separation unit and a wind park. Applying oxyfuel combustion has the potential to directly utilize O2 generated by the electrolyzer, which was analyzed by varying critical model parameters. A major objective was to determine whether applying oxyfuel combustion has a positive impact on the plant’s power-to-liquid (PtL) efficiency rate. For cases utilizing more than 70% of CO2 generated by the combustion, the oxyfuel’s O2 demand is fully covered by the electrolyzer, making oxyfuel a viable option for large scale applications. Conventional air combustion is recommended for small wind parks and scenarios using surplus electricity. Maximum PtL efficiencies of ηPtL,Oxy = 51.91% and ηPtL,Air = 54.21% can be realized. Additionally, a case study for one year of operation has been conducted yielding an annual output of about 17,000 t/a methanol and 100 GWhth./a thermal energy for an input of 50,500 t/a woodchips and a wind park size of 36 MWp.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


Author(s):  
Ari Kettunen ◽  
Timo Hyppa¨nen ◽  
Ari-Pekka Kirkinen ◽  
Esa Maikkola

The main objective of this study was to investigate the load change capability and effect of the individual control variables, such as fuel, primary air and secondary air flow rates, on the dynamics of large-scale CFB boilers. The dynamics of the CFB process were examined by dynamic process tests and by simulation studies. A multi-faceted set of transient process tests were performed at a commercial 235 MWe CFB unit. Fuel reactivity and interaction between gas flow rates, solid concentration profiles and heat transfer were studied by step changes of the following controllable variables: fuel feed rate, primary air flow rate, secondary air flow rate and primary to secondary air flow ratio. Load change performance was tested using two different types of tests: open and closed loop load changes. A tailored dynamic simulator for the CFB boiler was built and fine-tuned by determining the model parameters and by validating the models of each process component against measured process data of the transient test program. The know-how about the boiler dynamics obtained from the model analysis and the developed CFB simulator were utilized in designing the control systems of three new 262 MWe CFB units, which are now under construction. Further, the simulator was applied for the control system development and transient analysis of the supercritical OTU CFB boiler.


2021 ◽  
Vol 161 ◽  
pp. S1461-S1462
Author(s):  
W. Okada ◽  
M. Tanooka ◽  
H. Doi ◽  
K. Sano ◽  
M. Shibata ◽  
...  

Author(s):  
Claudio Ruggieri ◽  
Fernando F. Santos ◽  
Mitsuru Ohata ◽  
Masao Toyoda

This study explores the capabilities of a computational cell framework into a 3-D setting to model ductile fracture behavior in tensile specimens and damaged pipelines. The cell methodology provides a convenient approach for ductile crack extension suitable for large scale numerical analyses which includes a damage criterion and a microstructural length scale over which damage occurs. Laboratory testing of a high strength structural steel provides the experimental stress-strain data for round bar and circumferentially notched tensile specimens to calibrate the cell model parameters for the material. The present work applies the cell methodology using two damage criterion to describe ductile fracture in tensile specimens: (1) the Gurson-Tvergaard (GT) constitutive model for the softening of material and (2) the stress-modified, critical strain (SMCS) criterion for void coalescence. These damage criteria are then applied to predict ductile cracking for a pipe specimen tested under cycling bend loading. While the methodology still appears to have limited applicability to predict ductile cracking behavior in pipe specimens, the cell model predictions of the ductile response for the tensile specimens show good agreemeent with experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document