scholarly journals Implementation of Multi-Exit Neural-Network Inferences for an Image-Based Sensing System with Energy Harvesting

2021 ◽  
Vol 11 (3) ◽  
pp. 34
Author(s):  
Yuyang Li ◽  
Yuxin Gao ◽  
Minghe Shao ◽  
Joseph T. Tonecha ◽  
Yawen Wu ◽  
...  

Wireless sensor systems powered by batteries are widely used in a variety of applications. For applications with space limitation, their size was reduced, limiting battery energy capacity and memory storage size. A multi-exit neural network enables to overcome these limitations by filtering out data without objects of interest, thereby avoiding computing the entire neural network. This paper proposes to implement a multi-exit convolutional neural network on the ESP32-CAM embedded platform as an image-sensing system with an energy constraint. The multi-exit design saves energy by 42.7% compared with the single-exit condition. A simulation result, based on an exemplary natural outdoor light profile and measured energy consumption of the proposed system, shows that the system can sustain its operation with a 3.2 kJ (275 mAh @ 3.2 V) battery by scarifying the accuracy only by 2.7%.

Author(s):  
Midhun Muraleedharan ◽  
◽  
Amitabh Das ◽  
Dr. Mohammad Rafiq Agrewale ◽  
Dr. K.C. Vora ◽  
...  

Hybridization is important to obtain the advantages of both the engine and motor as the sources of propulsion. This paper discusses the effect of hybridization of powertrain on vehicle performance. The Hybrid architectures are differentiated on the basis percentage of power dependency on the engine and motor. Passenger car with hybridization ratios of 20%, 40%, 60%, 80% and 100% are modelled on MATLAB/Simulink using the backward facing approach with the engine and motor specifications remaining constant. The hybridizations ratios and the energy consumption in terms of fuel and battery energy are obtained from the model and compared. Neural network is implemented to determine the fuel consumption. The outputs can be used by a system designer to determine a desirable hybridization factor based on the requirements dictated by the specific application.


2013 ◽  
Vol 756-759 ◽  
pp. 2288-2293
Author(s):  
Shu Guang Jia ◽  
Li Peng Lu ◽  
Ling Dong Su ◽  
Gui Lan Xing ◽  
Ming Yue Zhai

Smart grid has become one hot topic at home and abroad in recent years. Wireless Sensor Networks (WSNs) has applied to lots of fields of smart grid, such as monitoring and controlling. We should ensure that there are enough active sensors to satisfy the service request. But, the sensor nodes have limited battery energy, so, how to reduce energy consumption in WSNs is a key challenging. Based on this problem, we propose a sleeping scheduling model. In this model, firstly, the sensor nodes round robin is used to let as little as possible active nodes while all the targets in the power grid are monitored; Secondly, for removing the redundant active nodes, the sensor nodes round robin is further optimized. Simulation result indicates that this sleep mechanism can save the energy consumption of every sensor node.


2014 ◽  
Vol 539 ◽  
pp. 247-250
Author(s):  
Xiao Xiao Liang ◽  
Li Cao ◽  
Chong Gang Wei ◽  
Ying Gao Yue

To improve the wireless sensor networks data fusion efficiency and reduce network traffic and the energy consumption of sensor networks, combined with chaos optimization algorithm and BP algorithm designed a chaotic BP hybrid algorithm (COA-BP), and establish a WSNs data fusion model. This model overcomes shortcomings of the traditional BP neural network model. Using the optimized BP neural network to efficiently extract WSN data and fusion the features among a small number of original date, then sends the extracted features date to aggregation nodes, thus enhance the efficiency of data fusion and prolong the network lifetime. Simulation results show that, compared with LEACH algorithm, BP neural network and PSO-BP algorithm, this algorithm can effectively reduce network traffic, reducing 19% of the total energy consumption of nodes and prolong the network lifetime.


2012 ◽  
Vol 229-231 ◽  
pp. 1261-1264
Author(s):  
Li Peng Lu ◽  
Ming Yue Zhai ◽  
Ying Liu ◽  
Xiao Da Sun

Wireless Sensor Networks (WSNs) has been widely recognized as a promising technology in smart grid. However, sensor nodes have limited battery energy. So, we present a mathematical model which is to reduce energy consumption and prolong the lifetime of WSNs. Because of the high density of sensor nodes deployment, a sleep mechanism is proposed to make all sensor nodes work by turns while all service requests can be satisfied. And then, an Improved Sleep Mechanism is put forward to remove redundant active nodes. The simulation result indicates that energy consumption adopting the ISNSS is lower than or equal to the energy consumption adopting SNSS. The SNSS and ISNSS all can save some energy of WSNs to some extent and when the redundant active nodes are removed, the network energy consumption is further reduced based on the SNSS.


Author(s):  
Yousheng Zou ◽  
Yuqing Song ◽  
Xiaobao Xu ◽  
Yuanzhou Zhang ◽  
Zeyao Han ◽  
...  

As an artificial perception system, neuromorphic vision sensing system can imitate the complex image sensing and processing functions of the human visual neural network. In order to stimulate the nervous...


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
E. Golden Julie ◽  
S. Tamil Selvi

Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Rajesh Kumar Varun ◽  
Rakesh C. Gangwar ◽  
Omprakash Kaiwartya ◽  
Geetika Aggarwal

In wireless sensor networks, energy is a precious resource that should be utilized wisely to improve its life. Uneven distribution of load over sensor devices is also the reason for the depletion of energy that can cause interruptions in network operations as well. For the next generation’s ubiquitous sensor networks, a single artificial intelligence methodology is not able to resolve the issue of energy and load. Therefore, this paper proposes an energy-efficient routing using a fuzzy neural network (ERFN) to minimize the energy consumption while fairly equalizing energy consumption among sensors thus as to prolong the lifetime of the WSN. The algorithm utilizes fuzzy logic and neural network concepts for the intelligent selection of cluster head (CH) that will precisely consume equal energy of the sensors. In this work, fuzzy rules, sets, and membership functions are developed to make decisions regarding next-hop selection based on the total residual energy, link quality, and forward progress towards the sink. The developed algorithm ERFN proofs its efficiency as compared to the state-of-the-art algorithms concerning the number of alive nodes, percentage of dead nodes, average energy decay, and standard deviation of residual energy.


2020 ◽  
pp. 1440-1458
Author(s):  
Nilayam Kumar Kamila ◽  
Sunil Dhal

In recent Wireless Sensor Network environment, battery energy conservation is one of the most important focus of research. The non-maintainable wireless sensor nodes need modern innovative ideas to save energy in order to extend the network life time. Different strategy in wireless sensor routing mechanism has been implemented to establish the energy conservation phenomenon. In earlier days, the nodes are dissipating maximum energy to communicate with each other(flooding) to establish the route to destination. In the next evolution of this research area, a clustering mechanism introduced which confirms the energy saving over the flooding mechanism. Neural Network is an advanced approach for self-clustering mechanism and when applied on wireless sensor network infrastructure, it reduces the energy consumption required for clustering. Neural network is a powerful concept with complex algorithms and capable to provide clustering solutions based on the wireless sensor network nodes properties. With the implementation of Neural Network on Wireless Sensor Network resolves the issues of high energy consumption required for network clustering. The authors propose a self-silence wireless sensor network model where sensor nodes change the sensing and transmitting mechanism by making self-silent in order to conserve the energy. This concept is simulated in neural network based wireless sensor network infrastructure of routing methodology and the authors observe that it extends the network life time. The mathematical analysis and simulation study shows the improved performance over the existing related neural network based wireless sensor routing protocols. Furthermore, the performance & related model parameters data set analysis provides the respective dependent relation information.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3445 ◽  
Author(s):  
Jianlin Liu ◽  
Fenxiong Chen ◽  
Jun Yan ◽  
Dianhong Wang

Data compression is a useful method to reduce the communication energy consumption in wireless sensor networks (WSNs). Most existing neural network compression methods focus on improving the compression and reconstruction accuracy (i.e., increasing parameters and layers), ignoring the computation consumption of the network and its application ability in WSNs. In contrast, we pay attention to the computation consumption and application of neural networks, and propose an extremely simple and efficient neural network data compression model. The model combines the feature extraction advantages of Convolutional Neural Network (CNN) with the data generation ability of Variational Autoencoder (VAE) and Restricted Boltzmann Machine (RBM), we call it CBN-VAE. In particular, we propose a new efficient convolutional structure: Downsampling-Convolutional RBM (D-CRBM), and use it to replace the standard convolution to reduce parameters and computational consumption. Specifically, we use the VAE model composed of multiple D-CRBM layers to learn the hidden mathematical features of the sensing data, and use this feature to compress and reconstruct the sensing data. We test the performance of the model by using various real-world WSN datasets. Under the same network size, compared with the CNN, the parameters of CBN-VAE model are reduced by 73.88% and the floating-point operations (FLOPs) are reduced by 96.43% with negligible accuracy loss. Compared with the traditional neural networks, the proposed model is more suitable for application on nodes in WSNs. For the Intel Lab temperature data, the average Signal-to-Noise Ratio (SNR) value of the model can reach 32.51 dB, the average reconstruction error value is 0.0678 °C. The node communication energy consumption can be reduced by 95.83%. Compared with the traditional compression methods, the proposed model has better compression and reconstruction accuracy. At the same time, the experimental results show that the model has good fault detection performance and anti-noise ability. When reconstructing data, the model can effectively avoid fault and noise data.


Sign in / Sign up

Export Citation Format

Share Document