scholarly journals Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
E. Golden Julie ◽  
S. Tamil Selvi

Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

2013 ◽  
Vol 706-708 ◽  
pp. 635-638
Author(s):  
Yong Lv

Wireless Sensor Networks consisting of nodes with limited power are deployed to collect and distribute useful information from the field to the other sensor nodes. Energy consumption is a key issue in the sensor’s communications since many use battery power, which is limited. In this paper, we describe a novel energy efficient routing approach which combines swarm intelligence, especially the ant colony based meta-heuristic, with a novel variation of reinforcement learning for sensor networks (ARNet). The main goal of our study was to maintain network lifetime at a maximum, while discovering the shortest paths from the source nodes to the sink node using an improved swarm intelligence. ARNet balances the energy consumption of nodes in the network and extends the network lifetime. Simulation results show that compared with the traditional EEABR algorithm can obviously improve adaptability and reduce the average energy consumption effectively.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 111
Author(s):  
S. Ramakrishnan ◽  
S. Prayla Shyry

Wireless sensor networks (WSNs) is considered as the predominant technology due to their high suitability and adaptability that makes it possible to be deployed in wide range of applications like civil and military domain. But energy-constraint is the significant feature that needs to be addressed for sensor networks since energy drain of sensor nodes affects network lifetime, stability and co-operation of sensor nodes in the event of enforce reliable data dissemination. Cluster head election has to been performed periodically in order to handle energy balance for facilitating reliable packet delivery. Most of the cluster head election schemes of the literature elect a node as cluster head either randomly or by elucidating their stochastic probabilities. Hence a Distributed Fuzzy Logic based Cluster Head Election Scheme (DFLCHES) that discriminates and discards packets from the sensor nodes that has the least probability of being elected as cluster head is proposed. DFLCHES utilizes five significant parameters such as trust, energy, node density, hop count and centrality measure for quantifying the probability of cluster head election. This DFLCHES is run on each neighbor nodes of the cluster members to facilitate the action of discrimination. DFLCHES also balances the energy consumption of the cluster members during transmission as it discards packets from ineligible nodes. Further the action of cluster head election has to be optimized periodically for reducing and balancing energy consumption for prolonging the network lifetime. In DFLCHES, the process of optimizing cluster head depends on the incorporation of the concept of Genetic algorithms for enabling and ensuring reliable routing.


2020 ◽  
Vol 21 (3) ◽  
pp. 555-568
Author(s):  
Anshu Kumar Dwivedi ◽  
A. K. Sharma

The uttermost requirement of the wireless sensor network is prolonged lifetime. Unequal energy degeneration in clustered sensor nodes lead to the premature death of sensor nodes resulting in a lessened lifetime. Most of the proposed protocols primarily choose cluster head on the basis of a random number, which is somewhat discriminating as some nodes which are eligible candidates for cluster head role may be skipped because of this randomness. To rule out this issue, we propose a deterministic novel energy efficient fuzzy logic based clustering protocol (NEEF) which considers primary and secondary factors in fuzzy logic system while selecting cluster heads. After selection of cluster heads, non-cluster head nodes use fuzzy logic for prudent selection of their cluster head for cluster formation. NEEF is simulated and compared with two recent state of the art protocols, namely SCHFTL and DFCR under two scenarios. Simulation results unveil better performance by balancing the load and improvement in terms of stability period, packets forwarded to the base station, improved average energy and extended lifetime.


2018 ◽  
Vol 2 (4) ◽  
pp. 239
Author(s):  
Yousif Khalid Yousid ◽  
R Badlishah ◽  
N. Yaakob ◽  
A Amir

One of the most critical problems in Wireless Sensor Networks (WSNs) is to how to reduce energy consumption and prolong the network lifetime of WSNs. Clustering is of the solutions, which have been used to reduce energy consumption by partition the network into clusters. However; most of the clustering schemes select the cluster head (CH) either randomly or based on centralized manner. Both approaches lead to deficient utilization of WSN resources. Therefore, the purpose of this paper is to illustrate a new multi-hop clustering protocol called EACPG, which aimed to provide energy efficiency and maintain load balancing. In EACPG the network is divvied into multiple numbers of virtual square grids. Also, different parameters are considered for cluster head election based on distributed manner. In addition, a new mechanism for CH rotation is used in order to maintain load balancing between CHs.  Finally, Results show that the proposed scheme has better performance in term of energy consumption and the number of alive sensor nodes and throughput.


2021 ◽  
Author(s):  
Ashok T ◽  
Prabakaran R

Abstract Wireless Sensor Network (WSN) is becoming a very important area of research in today’s world and contributes a lot in the field of technology. Reducing energy consumption and improving the network lifetime is the key factor to be considered.Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, to distribute the energy consumption among nodes in each cluster and extend the network lifetime. Also, it comprises various sensor nodes to detect different parameters. Among those non-replaceable batteries plays a greater part. Hence the system with such networks is essential that the sensor nodes consume as little energy as possible.To address the problem, we propose anovel model namely enhanced energy distributed unequal clustering which is mainly utilized for tackling energy consumption issues in multi-hop remote sensor systems. In the proposed method with an area of base station and energy are given significance as clustering parameters. Because of these parameters, diverse nodes are assigned. Here, another methodology has been proposed to enhance the working of EDUC, by electing cluster heads considering several nodes in the neighborhood. The incorporation of the area data for calculation of the opposition radii gives better adjusting of energy in correlation with the current methodology. The technique utilized is of holding similar bunches for a couple of rounds and is successful in decreasing the clustering overhead. The execution of the proposed convention has been assessed under three distinct scenarios and contrasted and existing conventions through reenactments. The outcomes demonstrate that the proposed plan beats the current conventions regarding system lifetime and performances in all the scenarios in terms of delay, energy consumption, packet loss ratio, and packet received ratio.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 534-541
Author(s):  
Sangeetha M. ◽  
Sabari A.

Purpose This paper aims to provide prolonging network lifetime and optimizing energy consumption in mobile wireless sensor networks (MWSNs). Forming clusters of mobile nodes is a great task owing to their dynamic nature. Such clustering has to be performed with a higher consumption of energy. Perhaps sensor nodes might be supplied with batteries that cannot be recharged or replaced while in the field of operation. One optimistic approach to handle the issue of energy consumption is an efficient way of cluster organization using the particle swarm optimization (PSO) technique. Design/methodology/approach In this paper two improved versions of centralized PSO, namely, unequal clustering PSO (UC-PSO) and hybrid K-means clustering PSO (KC-PSO), are proposed, with a focus of achieving various aspects of clustering parameters such as energy consumption, network lifetime and packet delivery ratio to achieve energy-efficient and reliable communication in MWSNs. Findings Theoretical analysis and simulation results show that improved PSO algorithms provide a balanced energy consumption among the cluster heads and increase the network lifetime effectively. Research limitations/implications In this work, each sensor node transmits and receives packets at same energy level only. In this work, focus was on centralized clustering only. Practical implications To validate the proposed swarm optimization algorithm, a simulation-based performance analysis has been carried out using NS-2. In each scenario, a given number of sensors are randomly deployed and performed in a monitored area. In this work, simulations were carried out in a 100 × 100 m2 network consisting 200 nodes by using a network simulator under various parameters. The coordinate of base station is assumed to be 50 × 175. The energy consumption due to communication is calculated using the first-order radio model. It is considered that all nodes have batteries with initial energy of 2 J, and the sensing range is fixed at 20 m. The transmission range of each node is up to 25 m and node mobility is set to 10 m/s. Practical implications This proposed work utilizes the swarm behaviors and targets the improvement of mobile nodes’ lifetime and energy consumption. Originality/value PSO algorithms have been implemented for dynamic sensor nodes, which optimize the clustering and CH selection in MWSNs. A new fitness function is evaluated to improve the network lifetime, energy consumption, cluster formation, packet transmissions and cluster head selection.


Sign in / Sign up

Export Citation Format

Share Document