scholarly journals Micromagnetic Analysis of Thermally Induced Influences on Surface Integrity Using the Burning Limit Approach

2019 ◽  
Vol 3 (4) ◽  
pp. 93 ◽  
Author(s):  
Jonas Heinzel ◽  
Daniel Sackmann ◽  
Bernhard Karpuschewski

Particularly for highly stressed components, it is important to have precise knowledge of the surface and subsurface properties and, thus, of the functional properties after final grinding at the end of a complex process chain in order to avoid rejected parts. Therefore, non-destructive testing methods have been the subject of research for several years. The Barkhausen noise analysis, as a micromagnetic measuring method, has the potential to characterize the subsurface area up to an analyzing depth δ non-destructively with micromagnetic parameters. In addition to micromagnetic multiparameter approaches, which allow post-process mode clear statements about the subsurface area state, the present research work deals with the concept of a connection of a single Barkhausen noise parameter with grinding process parameters. In combination with the analytical approach of Malkin for the thermal surface and subsurface area influence, which is based on the process parameters of grinding processes, a distinction between good and rejected ground parts can be achieved. The results show that, by post-process measurements of the Barkhausen noise on case-hardened workpieces made of steel 18CrNiMo7-6 (No. 1.6587, AISI 4820) and machined by a cylindrical grinding process, incipient changes in the residual stress state up to industrial-relevant limits, which distinguish between good and rejected parts, is possible. In the future, a combination of the Malkin grinding burning limit and sufficient condition monitoring based on in-process measurements of Barkhausen noise will be investigated. The application limits of the analytical approach of Malkin as well as the measurement of the Barkhausen noise in-process have to be determined.

2020 ◽  
Vol 87 (12) ◽  
pp. 787-798
Author(s):  
Rahel Jedamski ◽  
Jonas Heinzel ◽  
Maximilian Rößler ◽  
Jérémy Epp ◽  
Jochen Eckebrecht ◽  
...  

AbstractGrinding processes are often the last step in the value-added chain of high-performance hardened steel components. However, thermo-mechanical loads which can take place during the process can have a detrimental effect on the surface integrity of ground parts, which are generally tested by post-process measurements. In the present study, two different approaches for an in-process inspection of the workpiece surface integrity were assessed using magnetic Barkhausen noise analysis during cylindrical grinding of hardened workpieces. The results showed that both measuring systems are able to detect changes in the surface state of workpieces in-process or directly after grinding in the grinding machine. After preparations to protect the sensors from influences during the grinding process, changes in the residual stress state and a decrease of hardness could be reliably detected. Due to constant contact conditions between sensor and workpiece a high reproducibility of the measurements was achieved.


2015 ◽  
Vol 813-814 ◽  
pp. 388-392
Author(s):  
C. Thiagarajan ◽  
S. Ranganathan ◽  
P. Shankar

The present research work involves investigating the cylindrical grinding process parameters of Al/SiC metal matrix composites during machining. The effect of grinding process parameters on grinding force, surface roughness and grinding temperature were investigated experimentally using L27 orthogonal array. Grinding process was carried out using different combination of wheel velocity, workpiece velocity, feed rate and depth of cut. The significant grinding process parameters have been determined by using ANOVA. The grey grades identify the optimum level grinding process parameters. From the grey relational grade, low wheel velocity, medium workpiece velocity, medium feed rate and medium depth of cut gives the best results.


2019 ◽  
Vol 109 (11-12) ◽  
pp. 811-815
Author(s):  
B. Denkena ◽  
B. Bergmann ◽  
H. Blech

Unterschiedliche Belastungshistorien von Eisenbahnrädern führen zu Werkstoffveränderungen in der Lauffläche. Diese verursachen sporadisches Werkzeugversagen und verringern so die Prozesssicherheit. Die Messung der Material- und Prozesseigenschaften mit Barkhausenrauschen und Körperschall erlauben, individuelle Bearbeitungsparameter für jedes Exemplar festzulegen. Gezeigt werden die Herausforderungen in der Radsatzbearbeitung, und welche Informationen sich durch die Messtechniken gewinnen lassen.   Different load histories of train wheels lead to high variance of material properties on the running tread. Those cause unpredictable tool break and reduce process reliability. The measurement of magnetic Barkhausen noise and acoustic emission allow to gain information of the workpiece and the running process, to find optimal process parameters for the reconditioning of every individual wheel. Typical issues in train wheel machining and results of measurements are presented.


2017 ◽  
Vol 62 (3) ◽  
pp. 1803-1812 ◽  
Author(s):  
K. Shunmugesh ◽  
K. Panneerselvam

AbstractCarbon Fiber Reinforced Polymer (CFRP) is the most preferred composite material due to its high strength, high modulus, corrosion resistance and rigidity and which has wide applications in aerospace engineering, automobile sector, sports instrumentation, light trucks, airframes. This paper is an attempt to carry out drilling experiments as per Taguchi’s L27(313) orthogonal array on CFRP under dry condition with three different drill bit type (HSS, TiAlN and TiN). In this research work Response Surface Analysis (RSA) is used to correlate the effect of process parameters (cutting speed and feed rate) on thrust force, torque, vibration and surface roughness. This paper also focuses on determining the optimum combination of input process parameter and the drill bit type that produces quality holes in CFRP composite laminate using Multi-objective Taguchi technique and TOPSIS. The percentage of contribution, influence of process parameters and adequacy of the second order regression model is carried out by analysis of variance (ANOVA). The results of experimental investigation demonstrates that feed rate is the pre-dominate factor which affects the response variables.


2016 ◽  
Vol 827 ◽  
pp. 113-116 ◽  
Author(s):  
Kamil Kolařík ◽  
Nikolaj Ganev ◽  
Karel Trojan ◽  
Ondřej Řídký ◽  
Lukáš Zuzánek ◽  
...  

Non-destructive methods for detection and measurement of residual stresses (RS) have been increasingly used in the last few years. The paper outlines the capability of Barkhausen noise analysis (BNA) for evaluation of real structure changes and RS on cross-section of welds due to welding of ferromagnetic plates compared with X-ray diffraction (XRD). The purpose of this study is to evaluate the RS distribution of specimens joined using by high power diode laser and metal active gas (MAG) welding that can be used for quantitative analysis of macro and micro level RS separately. The principal advantages of BNA over XRD as a tool for RS analysis and real structure characterisation are that it is mobile, faster with more facile carrying out and hence BNA is frequently used for continuous monitoring of RS in industrial processes.


2009 ◽  
Vol 626-627 ◽  
pp. 23-28
Author(s):  
Wei Xing Xu ◽  
Yong Bo Wu ◽  
Takashi Sato ◽  
Wei Min Lin

In our previous study, a new centerless grinding method using surface grinder was proposed. This paper describes a simulation method for investigating the workpiece rounding process in which a model taking the elastic deformation of the machine into consideration is created, and revealing how the process parameters affect the machining accuracy in the new grinding technique. In addition, a practice way to determine the machining-elasticity parameter showing the elastic deformation is developed. The simulation results are compared to show the effect of process parameters on the machining accuracy.


2020 ◽  
Vol 44 (4) ◽  
pp. 295-300
Author(s):  
Sanjay Kumar ◽  
Ashish Kumar Srivastava ◽  
Rakesh Kumar Singh

Friction stir processing is an avant-garde technique of producing new surface composite or changing the different properties of a material through intense, solid-state localized material plastic deformation. This change in properties depends upon the deformation formed by inserting a non-consumable revolving tool into the workpiece and travels laterally through the workpiece. This research work highlights the effect of process parameters on mechanical properties of fabricated surface composites by friction stir processing. By using various reinforcing materials like Ti, SiC, B4C, Al2O3 with waste elements like waste eggshells, rice husks, coconut shell and coir will be used to fabricate the green composites which are environmentally friendly and reduces the problem of decomposition. The parameter for this experiment is considered as the reinforcing materials, tool rotation speed and tool tilt angle. The SiC/Al2O3/Ti along with eggshell are selected asreinforcement materials. The main effect of the reinforcement is to improve mechanical properties, like hardness, impact strength and strength. The results revealed that the process parameters significantly affect the mechanical properties of friction stir processed surface composites.


2021 ◽  
Vol 22 (2) ◽  
pp. 252-263
Author(s):  
Abdul Karim Shah ◽  
Ghulam Abbas Kandhro ◽  
Aqeel Ahmed Shah ◽  
Syed Nizam Uddin Shah Bukhari ◽  
Arshad Iqbal ◽  
...  

The cyclisation of citronellal to isopulegol is a significant intermediate stage in the production of menthols. In this research work, the effects of acid treatment on montmorillonite clay have been investigated and used in citronellal cyclisation reactions. Furthermore, the effects of acid treatment and hetero-poly acid impregnation have been determined on the textural and catalytic properties of montmorillonite clay. The designed catalysts were characterized by XRD, N2 sorption, and NH3- TPD techniques. Acid treatment of montmorillonite resulted in the enhancement of surface area and pore volume. The catalytic activity and selectivity parameters were lessened due to the severe leaching of Al ions from tetrahedral crystalline structures (e.g., weakened structure and loss of acidity). Among all prepared materials, the heteropoly acid supported HCl treated montmorillonite catalyst was observed as a more active, stable, and selective catalyst that showed the highest catalytic performance in citronellal cyclisation under optimized process parameters. The catalytic activity and selectivity were enhanced with rising mesoporosity and acidity parameters due to HCl acid treatment and HPA impregnation.


Sign in / Sign up

Export Citation Format

Share Document