scholarly journals 3D Simulation with Flow-Induced Rotation for Non-Deformable Tidal Turbines

2021 ◽  
Vol 9 (3) ◽  
pp. 250
Author(s):  
Ilan Robin ◽  
Anne-Claire Bennis ◽  
Jean-Claude Dauvin

The overall potential for recoverable tidal energy depends partly on the tidal turbine technologies used. One of problematic points is the minimum flow velocity required to set the rotor into motion. The novelty of the paper is the setup of an innovative method to model the fluid–structure interactions on tidal turbines. The first part of this work aimed at validating the numerical model for classical cases of rotation (forced rotation), in particular, with the help of a mesh convergence study. Once the model was independent from the mesh, the numerical results were tested against experimental data for both vertical and horizontal tidal turbines. The results show that a good correspondence for power and drag coefficients was observed. In the wake, the vortexes were well captured. Then, the fluid drive code was implemented. The results correspond to the expected physical behavior. Both turbines rotated in the correct direction with a coherent acceleration. This study shows the fundamental operating differences between a horizontal and a vertical axis tidal turbine. The lack of experiments with the free rotation speed of the tidal turbines is a limitation, and a digital brake could be implemented to overcome this difficulty.

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1228
Author(s):  
Guangnian Li ◽  
Qingren Chen ◽  
Hanbin Gu

The hydrodynamic interference between tidal turbines must be considered when predicting their overall hydrodynamic performance and optimizing the layout of the turbine array. These factors are of great significance to the development and application of tidal energy. In this paper, the phenomenon of hydrodynamic interference of the tidal turbine array is studied by the hydrodynamic performance forecast program based on an unsteady boundary element model for the vertical-axis turbine array. By changing the relative positions of two turbines in the double turbine array to simulate the arrangement of different turbines, the hydrodynamic interference law between the turbines in the array and the influence of relative positions on the hydrodynamic characteristics in the turbine array are explored. The manner in which the turbines impact each other, the degree of influence, and rules for turbine array arrangement for maximum efficiency of the array will be discussed. The results of this study will provide technical insights to relevant researchers.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4273 ◽  
Author(s):  
Mikaël Grondeau ◽  
Sylvain Guillou ◽  
Philippe Mercier ◽  
Emmanuel Poizot

Vertical axis tidal turbines are devices that extract the kinetic energy from tidal currents. Tidal currents can be highly turbulent. Since ambient turbulence affects the turbine hydrodynamic, it is critical to understand its influence in order to optimize tidal farms. Actuator Line Model (ALM) combined with Large Eddy Simulation (LES) is a promising way to comprehend this phenomenon. In this article, an ALM was implemented into a Lattice Boltzmann Method (LBM) LES solver. This implementation gives good results for predicting the wake of a vertical axis tidal turbine placed into a turbulent boundary layer. The validated numerical configuration was then used to compute the wake of a real size ducted vertical axis tidal turbine. Several upstream turbulence rates were simulated. It was found that the shape of the wake is strongly influenced by the ambient turbulence. The cost-to-precision ratio of ALM-LBM-LES compared to fully resolved LBM-LES makes it a promising way of modeling tidal farms.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1413 ◽  
Author(s):  
Guangnian Li ◽  
Qingren Chen ◽  
Hanbin Gu

An unsteady boundary element model is developed to simulate the unsteady flow induced by the motion of a multi-blade vertical axis turbine. The distribution of the sources, bound vortices and wake vortices of the blades are given in detail. In addition, to make the numerical solution more robust, the Kutta condition is also introduced. The developed model is used to predict the hydrodynamic performance of a vertical axis tidal turbine and is validated by comparison with experimental data and other numerical solutions available in the literature. Good agreement is achieved and the calculation of the proposed model is simpler and more efficient than prior numerical solutions. The proposed model shows its capability for future profile design and optimization of vertical axis tidal turbines.


2020 ◽  
Vol 27 (1) ◽  
pp. 116-125
Author(s):  
Li Guangnian ◽  
Qingren Chen ◽  
Yue Liu ◽  
Shanqiang Zhu ◽  
Qun Yu

AbstractIn this paper, a numerical code for predicting the hydrodynamic performance of vertical-axis tidal turbine array is developed. The effect of the tip speed ratio, solidity, and preset angle on the hydrodynamic performance are discussed using a series of calculations. The load principle of the rotor and the variation principle of the turbine power coefficient are studied. All these results can be considered as a reference for the design of vertical-axis tidal turbines.


Author(s):  
Meiyun Zheng ◽  
Zhuoyue Li ◽  
Peng Du ◽  
Haibao Hu ◽  
Xiaopeng Chen ◽  
...  

The installation of diffuser is an important way to improve the efficiency of tidal turbines, which is promising for engineering practice. In this paper, the open source code OpenFOAM is used as the platform. Numerical simulations are carried out to investigate the influence of the performance of the diffuser for the vertical axis tidal turbines. Several different types of diffusers are designed by distinguishing the line shape. Through systematic simulations, the influence of inlet line shape on the hydrodynamics performances of tidal energy diffuser is summarized. The velocity field, pressure field, etc. are analyzed to recover the flow modifications induced by the diffuser. The best line shape is finally found which can optimize the harnessing efficiency of the tidal turbine, which provides important clues for the development of tidal energy devices.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 797
Author(s):  
Stefan Hoerner ◽  
Iring Kösters ◽  
Laure Vignal ◽  
Olivier Cleynen ◽  
Shokoofeh Abbaszadeh ◽  
...  

Oscillating hydrofoils were installed in a water tunnel as a surrogate model for a hydrokinetic cross-flow tidal turbine, enabling the study of the effect of flexible blades on the performance of those devices with high ecological potential. The study focuses on a single tip-speed ratio (equal to 2), the key non-dimensional parameter describing the operating point, and solidity (equal to 1.5), quantifying the robustness of the turbine shape. Both parameters are standard values for cross-flow tidal turbines. Those lead to highly dynamic characteristics in the flow field dominated by dynamic stall. The flow field is investigated at the blade level using high-speed particle image velocimetry measurements. Strong fluid–structure interactions lead to significant structural deformations and highly modified flow fields. The flexibility of the blades is shown to significantly reduce the duration of the periodic stall regime; this observation is achieved through systematic comparison of the flow field, with a quantitative evaluation of the degree of chaotic changes in the wake. In this manner, the study provides insights into the mechanisms of the passive flow control achieved through blade flexibility in cross-flow turbines.


2020 ◽  
Author(s):  
Douglas Gillespie ◽  
Laura Palmer ◽  
Jamie Macaulay ◽  
Carol Sparling ◽  
Gordon Hastie

AbstractA wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.


2013 ◽  
Vol 47 (4) ◽  
pp. 142-150 ◽  
Author(s):  
David R. Schlezinger ◽  
Craig D. Taylor ◽  
Brian L. Howes

AbstractCollaborative work between the UMASS-Marine Renewable Energy Center, the Town of Edgartown, and the Coastal Systems Program is focused on developing the tidal energy potential of Muskeget Channel. We have undertaken detailed oceanographic and environmental surveys to optimize in-stream turbine power generation and to quantify potential environmental effects. In 2011 and 2012, tidal turbine demonstration projects were conducted in Muskeget Channel to determine the combined effects of blade strikes, shear stress, turbulence, and cavitation on zooplankton. Single turbines may minimally impact zooplankton populations; however, full-scale projects may potentially alter zooplankton populations forming the base of coastal food webs. Static plankton tows were performed up- and downstream of the operating turbine axis. Integral flow meters allowed adjustment of tow duration to optimize zooplankton density in the concentrate. Samples were held at in situ temperatures, and sequential photomicrographs and video images were taken to determine particle density, size distribution, and the number of live organisms in samples taken up and down gradient of the operating tidal turbines within 3 h of collection. Statistical analysis showed no significant difference in the total number or size distribution of motile zooplankters, indicating tidal turbine operation did not cause significant mortality and suggested that impacts of commercial size tidal energy projects upon zooplankton populations in Muskeget Channel may be negligible.


Sign in / Sign up

Export Citation Format

Share Document