scholarly journals Exhaust Gas Emission Improvements of Water/Bunker C Oil-Emulsified Fuel Applied to Marine Boiler

2021 ◽  
Vol 9 (5) ◽  
pp. 477
Author(s):  
Tae-Ho Lee ◽  
Sang-Hyun Lee ◽  
Jee-Keun Lee

In this study, emulsified fuels were prepared and produced by blending 0%, 5%, 15%, and 25% water with Bunker C oil to reduce the amount of air pollution emitted by ships and replace oil resources, and they were applied to an actual marine boiler to analyze the exhaust gas. The fuel effects on the improvement in exhaust gas emissions were as follows: The oxygen (O2) concentration increased by up to 4.2%, and that of carbon dioxide decreased by approximately 2.1%. Under the standard O2 concentration of 4%, the concentration of nitrogen oxides decreased by up to 31.41%, and that of sulfur oxides decreased by up to 37.47%. However, the exhaust gas temperature decreased by approximately 14.3%, and the combustion efficiency decreased by approximately 2.6%. Comparing the emission improvements, the combustion performance of the emulsified fuels was close to that of the conventional Bunker C fuel. These results indicate that the application of water-emulsified fuels to a marine boiler can reduce the amounts of certain air pollutants.

Author(s):  
Anand Nageswaran Bharath ◽  
Nitya Kalva ◽  
Rolf D. Reitz ◽  
Christopher J. Rutland

Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) can result in significant improvements of fuel economy and emissions reduction. However, they can produce significant carbon monoxide and unburnt hydrocarbon emissions at low load operating conditions due to poor combustion efficiencies at these operating points, which is a consequence of the low combustion temperatures that cause the oxidation rates of these species to slow down. The exhaust gas temperature is also not high enough at low loads for effective performance of turbocharger systems and diesel oxidation catalysts (DOC). The DOC is extremely sensitive to exhaust gas temperature changes and lights off only when a certain temperature is reached, depending on the catalyst specifications. Uncooled EGR can increase combustion temperatures, thereby improving combustion efficiency, but high EGR concentrations of 50% or more are required, thereby increasing pumping work and reducing volumetric efficiency. However, with early exhaust valve opening, the exhaust gas temperature can be much higher, allowing lower EGR flow rates, and enabling activation of the DOC for more effective oxidization of unburnt hydrocarbons and CO in the exhaust. In this paper, a multi-cylinder engine system simulation of RCCI at low load operation with early exhaust valve opening is presented, along with consideration of the exhaust aftertreatment system. The combustion process is modeled using the 3D CFD code, KIVA, and the heat release rates obtained from this combustion are used in a GT-Power model of a turbocharged, multi-cylinder light-duty RCCI engine for a full system simulation. The post-turbine exhaust gas is fed into GT-Power’s aftertreatment model of the engine’s DOC to determine the catalyst response. It is confirmed that opening the exhaust valve earlier increases the exhaust gas temperature, and hence lower EGR flow rates are needed to improve combustion efficiency. It was also found that exhaust temperatures of around 457 K are required to light off the catalyst and oxidize the unburnt hydrocarbons and CO effectively. Performance of the DOC was drastically improved and higher amounts of unburnt hydrocarbons were oxidized by increasing the exhaust gas temperature.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Amir Mardani ◽  
Benyamin Asadi Rekabdarkolaei ◽  
Hamed Rezapour Rastaaghi

Abstract In this work, a double-high swirl gas turbine model combustor (GTMC) has been experimentally investigated to identify the effects of air partitioning and swirlers geometry on combustion characteristics in terms of flame stability, exhaust gas temperature, NOx generation, and combustion efficiency. This high swirl model combustor is originally developed in the German Aerospace Center (DLR) and known as GTMC and recently reconstructed at Sharif University's Combustion Laboratory (named as SGTMC). Here, SGTMC run for liquefied petroleum gas (LPG) fuel and air oxidizer at room temperature and atmospheric pressure. Eleven different burner geometries, M1–M11, are considered for the aims of this work. Furthermore, the effects of burner confinement are also investigated. The results show that under the confined state, the flame has a lower width and height than the unconfined one. Exchanging the swirlers of annular and central air inlets shows a more stable and lifted V type flame with almost zero levels of CO and CH4. In addition, measurement showed that the annular swirler removing leads to incomplete combustion. Moreover, an increment in discharged air velocity leads to more completed combustion and less pollutant exhaust gas but the attachment of flame to the burner hub. Strengthening the flow channeling is not reasonable in terms of emission aspects. Moreover, burner configuring to counterrotating swirlers leads to a more stable flame but with lower combustion efficiency. Among 11 test cases, the original configuration and the case of exchanging the swirlers of annular and central air inlets are the best choices in terms of combustion efficiency and stability. Measurements show the improvement of burner stability, 2–10%, due to inlet air preheating.


2019 ◽  
Vol 22 (1) ◽  
pp. 295-315 ◽  
Author(s):  
Reza Golzari ◽  
Hua Zhao ◽  
Jonathan Hall ◽  
Mike Bassett ◽  
John Williams ◽  
...  

Introduction of ever more stringent emission regulations on internal combustion engines beyond 2020 makes it necessary for original equipment manufacturers to find cost-effective solutions to improve the combustion engine efficiency and decrease its emissions. Highly efficient combustion engines can benefit from technologies such as cooled external exhaust gas recalculation and water injection. Among these technologies water injection can be used as a promising method to mitigate knock and significantly reduce the CO2 emissions. This is particularly important in highly downsized boosted engines which run under much higher intake pressures and are more prone to knocking combustion. In addition to anti-knock behaviour, water injection is also an effective method for reducing NOx emissions and exhaust gas temperature at high loads, which can protect the turbine in turbocharged engines. This study shows the influence of intake port injection of water on efficiency and emissions of a boosted downsized single-cylinder gasoline direct-injection engine in detail. Six different steady-state speed and load combinations were selected to represent the conditions that knocking combustion start to occur. Water ratio sweep tests were performed to find out the optimum water/fuel ratio at each test point and the impact on the combustion and emissions. In addition to gaseous emissions, impact of water injection on particle emissions was also investigated in this study. The results show the net indicated efficiency improved significantly (by a maximum of around 5% at medium load and around 15% at high load) up to a maximum level by increasing the injected water mass. Improvement in efficiency was mainly due to the increased heat capacity of charge and cooling effect of the injected water evaporation which reduced the in-cylinder temperature and pressure. Thus, knock sensitivity was reduced and more advanced spark timings could be used, which shifted the combustion phasing closer to the optimum point. However, increasing the water/fuel ratio further (more than 1 at medium load and more than 1.5 at high load) deteriorated the combustion efficiency, prolonged the flame development angle and combustion duration, and caused a reduction in the net integrated area of the P-V diagram. Efficiency improvements were lower at higher engine speed (3000 r/min) as the knock sensitivity was already reduced intrinsically. In terms of other, harmful, non-CO2 emissions, water injection was effective in reducing the NOx emissions significantly (by a maximum of around 60%) but increased the HC emissions as the water/fuel ratio increased. The results also show a significant reduction in particle emissions by adding water to the mixture and advancing the spark timing at medium and high loads. In addition, water injection also reduced the exhaust gas temperature by around 80°C and 180°C at medium and high loads, respectively.


SINERGI ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Hadi Pranoto ◽  
Dafit Feriyanto ◽  
Supaat Zakaria

Catalytic converter (CATCO) and its effect on engine performance and exhaust gas temperature became an exciting field in automotive research. In this study purposed to compare existing CATCO which is ceramic and metallic with FeCrAl CATCO that treated with a combination of ultrasonic bath and electroplating technique in 30 minutes holding time (UB+EL 30 min). This study proposed to select an appropriate CATCO that used in a gasoline engine to increase the performance and to reduce the exhaust gas temperature as well as its potential to reduce the exhaust gas emission. Mitsubishi 4G93 conducted this analysis with 1.8 L and 10.5 compression ratio with a variable speed of 100, 2000 and 3000 rpm and different engine load of 10, 20 and 30%. The result shows that the FeCrAl CATCO was more useful to reduce fuel consumption up to 66.42% and increase torque up to 15.79% as well as reduce exhaust gas temperature up to 30.11% as compared to ceramic and metallic CATCO. It can be concluded that FeCrAl CATCO coated by UB+EL 30 min was recommended to increase engine performance and to reduce exhaust gas emission.


2017 ◽  
Vol 21 (2) ◽  
pp. 1011-1019 ◽  
Author(s):  
Dias Umyshev ◽  
Abay Dostiyarov ◽  
Musagul Tumanov ◽  
Quiwang Wang

Combustion characteristics and NOx emissions of propane and air mixture in a channel with a bluff body were investigated experimentally. Effects of the angle and type of the flameholder on the NOx emissions, blow-off limit, combustion efficiency, and exhaust gas temperature were examined. The results show that the NOx emissions are dependent on flameholder type and angle. Also it was observed that the perforated V-gutters considerably increases the blow-off performance. Moreover, the blow-off limit decreases as the geometrical size of flame-holder is increased. In addition, the combustion efficiency increase first and then decrease with the increase of the angle. The physics of the combustion process behind V-gutter flameholdes has been discussed. On the basis of experiment authors presented a modified version of the formula for calculation of lean blow-off limits when using bluff bodies, such as V-gutter flameholders.


Author(s):  
Yasuhisa Ichikawa ◽  
Hidenori Sekiguchi ◽  
Oleksiy Bondarenko ◽  
Koichi Hirata

This study aims to develop an exhaust gas temperature increase technique of a lean burn gas engine, to improve the performance of the waste heat recovery devices that potentially can be installed in the future. This paper shows the exhaust gas temperature increase technique using an EGR device. In our experiments, the lean burn gas engine has the rated power output of 400 kW with spark-ignition and pre-chamber systems. The EGR device was developed and installed to the gas engine. The experimental results showed that the exhaust gas temperature was increased to +30 °C at the EGR rate of 15 % with maintained NOx emission and CA MFB 50% by decreasing the relative air/fuel ratio (Λ) and advancing the ignition timing (θig). In addition, the gross generation efficiency was slightly increased with increasing the EGR rate. This result was explained using three factors; the internal engine efficiency, the combustion efficiency, and the recirculated energy rate.


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.


Sign in / Sign up

Export Citation Format

Share Document