scholarly journals A Comparative Study on the Hydrodynamic-Energy Loss Characteristics between a Ducted Turbine and a Shaftless Ducted Turbine

2021 ◽  
Vol 9 (9) ◽  
pp. 930
Author(s):  
Ke Song ◽  
Bangcheng Yang

The shaftless ducted turbine (abbreviated as SDT), as an extraordinary innovation in tidal current power generation applications, has many advantages, and a wide application prospect. The structure of an SDT resembles a ducted turbine (abbreviated as DT), as both contain blades and a duct. However, there are some structural differences between a DT and a SDT, which can cause significant discrepancy in the hydrodynamic characteristics and flow features. The present work compares the detailed hydrodynamic-energy loss characteristics of a DT and a SDT by means of computational fluid dynamics (CFD), performed by solving the 3D steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations in combination with the Menter’s Shear Stress Transport (SST k−ω) turbulence model and entropy production model. The results show the SDT features a higher power level at low tip speed ratio (TSR) and a potential reduction in potential flow resistance and disturbance with respect to the DT. Moreover, a detail entropy production analysis shows the energy loss is closely related to the flow separation and the reverse flow, and other negative flow factors. The entropy production of the SDT is lessened than that of the DT at different TSR. Unlike the DT, the SDT allows a large mass flow of water to leak through the open-center structure, which plays an important role in improving the wake structure and avoiding the negative flow along the central axis.

2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Ren Yun ◽  
Zhu Zuchao ◽  
Wu Denghao ◽  
Li Xiaojun

Multistage centrifugal pumps are highly efficient and compact in structure. Pump efficiency can be improved by an effective understanding of hydraulic behavior and energy loss, however, the traditional hydraulic loss evaluation method does not readily reveal the specific locations of energy loss in the pump. In this study, a guide ring was imposed in multistage pumps, and an entropy production theory was applied to investigate irreversible energy loss of a multistage pump with and without guide ring. Detailed distributions of energy losses in the pumps were calculated to determine the respective entropy production rates (EPRs). The EPR values as calculated are in close accordance with actual hydraulic loss values in the pumps. EPR values were higher in the multistage pump with the guide ring than the pump without a guide ring under part-load flow conditions (0.2Qd). However, the vortex flow in the pump was weakened (or eliminated) by the guide ring as flow rate increased; this reduced energy loss in the chambers. Flow passing the chamber was stabilized by the guide ring, which decreased shock and vortex loss in the chamber and guide vane. Under both designed flow condition and overload conditions, the EPR values of the guide ring-equipped multistage pump were lower than those without the guide ring. Furthermore, minimum efficiency index (MEI) values were also calculated for the two chamber structures; it was found that overall efficiency of pump with guide ring is better than that without.


Author(s):  
Jai Nendran Goundar ◽  
M. Rafiuddin Ahmed ◽  
Young-Ho Lee

Marine current energy is a reliable and clean source of energy. Many marine current turbines have been designed and developed over the years. Placement of an appropriately designed duct or shroud around the turbine significantly improves the turbine performance. In the present work, a ducted Savonius turbine (DST) is designed and optimized and its performance analysis carried out. The components of DSTs are simple and easily available and can be manufactured in developing countries like Fiji. A scaled-down model of 1/20 of a DST was fabricated and tested in a water stream at a velocity of 0.6 m/s and the results were used to validate the results from a commercial computational fluid dynamics (CFD) code ANSYS-cfx. Finally, a full-scale DST was modeled to study the flow characteristics in the turbine and the performance characteristics. The maximum efficiency of the turbine is around 50% at the tip speed ratio (TSR) of 3.5 and the maximum shaft power obtained is 10 kW at the rated speed of 1.15 m/s and around 65 kW at a freestream velocity of 2.15 m/s. The stress distribution on the ducted turbine was also obtained.


2019 ◽  
Author(s):  
Olanrewaju Abiodun ◽  
Okke Batelaan ◽  
Huade Guan ◽  
Jingfeng Wang

Abstract. The aim of this research is to develop evaporation and transpiration products for Australia based on the maximum entropy production model (MEP). We introduce a method into the MEP algorithm of estimating the required model parameters over the entire Australia through the use of pedotransfer function, soil properties and remotely sensed soil moisture data. Our algorithm calculates the evaporation and transpiration over Australia on daily timescales at the 5 km2 resolution for 2003–2013. The MEP evapotranspiration (ET) estimates are validated using observed ET data from 20 Eddy Covariance (EC) flux towers across 8 land cover types in Australia. We also compare the MEP ET at the EC flux towers with two other ET products over Australia; MOD16 and AWRA-L products. The MEP model outperforms the MOD16 and AWRA-L across the 20 EC flux sites, with average root mean square errors (RMSE), 8.21, 9.87 and 9.22 mm/8 days respectively. The average mean absolute error (MAE) for the MEP, MOD16 and AWRA-L are 6.21, 7.29 and 6.52 mm/8 days, the average correlations are 0.64, 0.57 and 0.61, respectively. The percentage Bias of the MEP ET was within 20 % of the observed ET at 12 of the 20 EC flux sites while the MOD16 and AWRA-L ET were within 20 % of the observed ET at 4 and 10 sites respectively. Our analysis shows that evaporation and transpiration contribute 38 % and 62 %, respectively, to the total ET across the study period which includes a significant part of the “millennium drought” period (2003–2009) in Australia. The data (Abiodun et al., 2019) is available at https://doi.org/10.25901/5ce795d313db8.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1212 ◽  
Author(s):  
Bo Li ◽  
Wen-Na Wei ◽  
Qing-Cui Wan ◽  
Kang Peng ◽  
Ling-Ling Chen

The purpose of this study is to analyze the dynamic properties of gas hydrate development from a large hydrate simulator through numerical simulation. A mathematical model of heat transfer and entropy production of methane hydrate dissociation by depressurization has been established, and the change behaviors of various heat flows and entropy generations have been evaluated. Simulation results show that most of the heat supplied from outside is assimilated by methane hydrate. The energy loss caused by the fluid production is insignificant in comparison to the heat assimilation of the hydrate reservoir. The entropy generation of gas hydrate can be considered as the entropy flow from the ambient environment to the hydrate particles, and it is favorable from the perspective of efficient hydrate exploitation. On the contrary, the undesirable entropy generations of water, gas and quartz sand are induced by the irreversible heat conduction and thermal convection under notable temperature gradient in the deposit. Although lower production pressure will lead to larger entropy production of the whole system, the irreversible energy loss is always extremely limited when compared with the amount of thermal energy utilized by methane hydrate. The production pressure should be set as low as possible for the purpose of enhancing exploitation efficiency, as the entropy production rate is not sensitive to the energy recovery rate under depressurization.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095996
Author(s):  
Xiong Pan ◽  
Chen Xinyuan ◽  
Sun Hongjun ◽  
Zhong Jiping ◽  
Zhen Chenping

To understand the effect of internal leakage on the torque field and characteristics of a torque converter (TC), a transient analysis was performed on the internal flow of a TC and the pressure pulsation characteristics of monitoring points in the convection channel. It was found that dividing the leakage area of the TC into a separate watershed improved simulation accuracy by 4%. When there was a leakage area, there were distinct collision, mixing, and assimilation stages between the leakage flow and the main flow. These phenomena caused energy loss that was highest at low speed ratios. However, the leakage flow always accounted for 12% of the main flow regardless of the speed ratio. At the same time, the leakage flow had a larger influence on pressure pulsation inside the TC and especially the low frequency band was more substantial. This shows that the leakage area has a large influence on the TC performance, energy loss, and flow state. Analysis of the leakage area showed that reducing the leakage area helps to improve powertrain performance and fuel economy.


2012 ◽  
Vol 573-574 ◽  
pp. 260-265 ◽  
Author(s):  
Xiang Yang Jiang

Reserve system is a far from equilibrium nonlinear complex systems, and paradigms that make use of linear scientific is difficult to grasp its essence. Based on the basic characteristics of nature reserve systems, utilize ultra-entropy production model, revealing the reserve system evolution, provide a scientific basis to the natural reserve tourism development and the harmony management of the ecological and environmental protection.


Sign in / Sign up

Export Citation Format

Share Document