scholarly journals Comparative Life Cycle Assessment of Marine Insulation Materials

2021 ◽  
Vol 9 (10) ◽  
pp. 1099
Author(s):  
Hayoung Jang ◽  
Yoonwon Jang ◽  
Byongug Jeong ◽  
Nak-Kyun Cho

This study aimed to reduce the holistic environmental impacts of insulation materials proposed for the accommodation of a marine cargo ship, and suggest the optimal option for cleaner ship production, using life cycle assessment. With a commercial bulk carrier as a case ship, three major insulations were assessed, which were wool-based material (mineral wool or glass wool), expanded polystyrene, and polyurethane foam. The analysis was scoped based on ‘from cradle to grave’, while focusing on the following five representative environmental indicators: global warming potential100years, acidification potential, eutrophication potential, ozone depletion potential, and human toxicity potential. The assessment was performed in the platform of the GaBi software. The results showed that polyurethane foam would have the greatest impacts, especially in regard to global warming, eutrophication, and human toxicity. On the other hand, expanded polystyrene and wool-based material showed better environmental performance than polyurethane foam. For example, wool-based insulation was found, in terms of GWP and HTP, to produce 2.1 × 104 kg CO2-eq and 760.1 kg DCB-eq, respectively, and expanded polystyrene had similar results with respect to GWP, AP, and EP as 2.1 × 104 kg CO2-eq, 23.3 kg SO2-eq, and 2.7 kg Phosphate-eq, respectively. In fact, the research findings point out the shortcomings of current design practices in selecting insulation materials for marine vessels, while providing meaningful insights into the importance of the selection of appropriate insulation materials for marine vessels for cleaner shipping. Therefore, it is believed that this paper will make a sound contribution to enhancing future design practice and regulatory frameworks in response to environmental issues in the marine industry.

2016 ◽  
Vol 35 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Bhupendra K Sharma ◽  
Munish K Chandel

Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO2 eq t−1 of municipal solid waste, 0.124 kg SO2 eq t−1, 0.46 kg PO4−3 eq t−1, 0.44 kg 1,4-DB eq t−1 to 892.34 kg CO2 eq t−1, 0.121 kg SO2 eq t−1, 0.36 kg PO4−3 eq t−1, 0.40 kg 1,4-DB eq t−1, respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.


2019 ◽  
Vol 25 (3) ◽  
pp. 456-477 ◽  
Author(s):  
Heini Elomaa ◽  
Pia Sinisalo ◽  
Lotta Rintala ◽  
Jari Aromaa ◽  
Mari Lundström

Abstract Purpose Currently, almost all cyanide-free gold leaching processes are still in the development stage. Proactively investigating their environmental impacts prior to commercialization is of utmost importance. In this study, a detailed refractory gold concentrate process simulation with mass and energy balance was built for state-of-the-art technology with (i) pressure oxidation followed by cyanidation and, compared to alternative cyanide-free technology, with (ii) pressure oxidation followed by halogen leaching. Subsequently, the simulated mass balance was used as life cycle inventory data in order to evaluate the environmental impacts of the predominant cyanidation process and a cyanide-free alternative. Methods The environmental indicators for each scenario are based on the mass balance produced with HSC Sim steady-state simulation. The simulated mass balances were evaluated to identify the challenges in used technologies. The HSC Sim software is compatible with the GaBi LCA software, where LCI data from HSC-Sim is directly exported to. The simulation produces a consistent life cycle inventory (LCI). In GaBi LCA software, the environmental indicators of global warming potential (GWP), acidification potential (AP), terrestrial eutrophication potential (EP), and water depletion (Water) are estimated. Results and discussion The life cycle assessment revealed that the GWP for cyanidation was 10.1 t CO2-e/kg Au, whereas the halogen process indicated a slightly higher GWP of 12.6 t CO2-e/kg Au. The difference is partially explained by the fact that the footprint is calculated against produced units of Au; total recovery by the halogen leaching route for gold was only 87.3%, whereas the cyanidation route could extract as much as 98.5% of gold. The addition of a second gold recovery unit to extract gold also from the washing water in the halogen process increased gold recovery up to 98.5%, decreasing the GWP of the halogen process to 11.5 t CO2-e/kg Au. However, both evaluated halogen processing scenarios indicated a slightly higher global warming potential when compared to the dominating cyanidation technology. Conclusions The estimated environmental impacts predict that the development-stage cyanide-free process still has some challenges compared to cyanidation; as in the investigated scenarios, the environmental impacts were generally higher for halogen leaching. Further process improvements, for example in the form of decreased moisture in the feed for halide leaching, and the adaptation of in situ gold recovery practices in chloride leaching may give the cyanide-free processing options a competitive edge.


Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 197-204
Author(s):  
Marudut Sirait

Tujuan dari makalah ini adalah untuk mengidentifikasi potensi dampak lingkungan selama proses produksi gula tebu di Jawa Timur Indonesia. Studi ini menggunakan pendekatan Life Cycle Assesment (LCA) untuk mengevaluasi dampak  lingkungan selama proses produksi gula dari tebu. Analisis LCA fokus pada pengolahan tebu menjadi gula, yang terdiri dari proses persiapan, proses miling, centrifugal separation, proses clarification, proses evaporation, dan proses crystalization. Hasil Life Cycle Impact Assessment (LCIA) diekpresikan dengan metode EDIB 2003, menunjukkan bahwa dampak lingkungan yang paling signifikan terhadap penurunan kualitas lingkungan adalah  global warming, acidification, eutrofikasi, human toxicity air, dan ozone depletion. Selanjutnya, proses produksi gula yang paling besar kontribusnya pada dampak lingkungan adalah proses penggilingan/miling, diikuti oleh proses centrifugal seperation,proses clarification, proses crystallization,proses evaporation, dan proses preperation untuk semua kategori dampak lingkungan.Life Cycle Assessment Study of Sugarcane: The case of East JavaABSTRACTThe purpose of this paper is to identify potential environmental impacts during the process of sugarcane production in East Java, Indonesia. This study utilized Life Cycle Assessment (LCA) approach to evaluate the environmental impact during the manufacturing of sugar cane. LCA analysis focuses on processing sugarcane, which consists of the preparation process, the milling process, centrifugal separation, the clarification process, the evaporation process, and the crystalization process. The Life Cycle Impact Assessment (LCIA) was expressed by the EDIB 2003 method. The result showed that the most significant environmental impacts on environmental degradation were global warming, acidification, eutrophication, human toxicity of water, and ozone depletion. Furthermore, the production process with the greatest contribution to environmental impact were the miling process, followed by centrifugal seperation process, clarification process, crystallization process, evaporation process, and preperation process for all categories of environmental impacts.Keywords: Environmental Impact, Energy, Sugarcane, Global Warming, Life Cycle Assessment


2011 ◽  
Vol 471-472 ◽  
pp. 999-1004 ◽  
Author(s):  
Mariam Al-Ma'adeed ◽  
Gozde Ozerkan ◽  
Ramazan Kahraman ◽  
Saravanan Rajendran ◽  
Alma Hodzic

Although recycled polymers and reinforced polymer composites have been in use for many years there is little information available on their environmental impacts. The goal of the present study is to analyze the environmental impact of new composite materials obtained from the combination of recycled thermoplastics (polypropylene [PP] and polyethylene [PE]) with mineral fillers like talc and with glass fiber. The environmental impact of these composite materials is compared to the impact of virgin PP and PE. The recycled and virgin materials were compared using life cycle assessment method according to their environmental effects. Within the scope of the study, GaBi software was used for Life Cycle Assessment (LCA) analysis. From cradle-to-grave life cycle inventory studies were performed for 1 kg of each of the thermoplastics. Landfilling was considered as reference scenario and compared with filled recycled plastics. A quantitative impact assessment was performed for four environmental impact categories, global warming (GWP) over a hundred years, human toxicity (HTP), abiotic depletion (ADP) and acidification potential (AP) were taken into consideration during LCA. In the comparison of recycled and virgin polymers, it was seen that recycling has lower environmental effect for different impact assessment methods like acidification potential, abiotic depletion, human toxicity and global warming.


2017 ◽  
Vol 15 (5) ◽  
pp. 667-688 ◽  
Author(s):  
Milad Soleimani ◽  
Mohsen Shahandashti

Purpose Bioconcrete is widely believed to be environmentally beneficial over conventional concrete. However, the process of bioconcrete production involves several steps, such as waste recovery and treatment, that potentially present significant environmental impacts. Existing life-cycle assessments of bioconcrete are limited in the inventory and impact analysis; therefore, they do not consider all the steps involved in concrete production and the corresponding impacts. The purpose of this study is to extensively study the cradle-to-gate environmental impacts of all the production stages of two most common bioconcrete types (i.e. sludge-based bioconcrete and cement kiln dust-rice husk ash (CKD-RHA) bioconcrete) as opposed to conventional concrete. Design/methodology/approach A cradle-to-gate life-cycle assessment process model is implemented to systematically analyze and quantify the resources consumed and the environmental impacts caused by the production of bioconcrete as opposed to the production of conventional concrete. The impacts analyzed in this assessment include global warming potential, ozone depletion potential, eutrophication, acidification, ecotoxicity, smog, fossil fuel use, human toxicity, particulate air and water consumption. Findings The results indicated that sludge-based bioconcrete had higher levels of global warming potential, eutrophication, acidification, ecotoxicity, fossil fuel use, human toxicity and particulate air than both conventional concrete and CKD-RHA bioconcrete. Originality/value The contribution of this study to the state of knowledge is that it sheds light on the hidden impacts of bioconcrete. The contribution to the state of practice is that the results of this study inform the bioconcrete production designers about the production processes with the highest impact.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 163
Author(s):  
Murad Saeed Sedeeq ◽  
Shadan Kareem Ameen ◽  
Ali Bolatturk

Environmental pollution is one of the biggest problems facing the world, even it is the most dangerous. Therefore, it becomes necessary to combine all efforts to reduce or eliminate it. Iraq is at the forefront of countries that suffer from major environmental problems. The present study aims to perform a comparative environmental assessment for three commonly available thermal insulation materials in Iraq namely expanded polystyrene (EPS), extruded polystyrene (XPS), and rock wool (RW) to select least environmental impact material. A cradle to gate life cycle assessment is performed to assess the environmental impact of each insulation material taking into account manufacturing, transportation, and installation and disposal stages. A life cycle assessment program SimaPro is used to model thermal insulation materials during its life cycle. A life cycle impact analysis method CML 2001 has been selected to assess the environmental aspects associated with two global damage categories as ozone layer depletion and global warming and two regional damage categories as acidification and eutrophication. Economically optimized amount of each insulation material is selected to represent the functional unit of life cycle assessment. The results illustrate that the EPS has the lower contribution in all environmental impact categories for all climatic regions. So, the EPS can be select as a proper thermal insulation material for the building sector from an economic and environmental perspective. The results of LCA are used to determine the amount of CO2 can be reduced per meter square of the exterior wall by using the economical amount of EPS during the lifetime of insulation material. The environmental impact results show that using EPS will contribute in CO2 emission reduction at about 81.5 % in all climatic regions in Iraq. 


2021 ◽  
Vol 920 (1) ◽  
pp. 012030
Author(s):  
Y S Lim ◽  
T N T Izhar ◽  
I A Zakarya ◽  
S Y Yusuf ◽  
S K Zaaba ◽  
...  

Abstract Expanded polystyrene (EPS) is one of the most common materials used in packaging. In Malaysia, EPS is a type of plastic which is not in the recycling category. Usually, EPS wastes will end up in landfill and incinerator, leading to severe environmental impacts. Therefore, a cradle-to-grave life cycle assessment (LCA) study of EPS was carried out to investigate the potential environmental impacts of EPS. The most significant potential environmental impact will also be identified. Both will be identified under 2 different scenarios. The study was analyzed using GaBi Education Software with the method of TRACI 2.1 to the environmental indicators of global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and ozone depletion potential (ODP). In scenario 1, the emission percentage for GWP, AP, EP, and ODP are 99.73 %, 0.21 %, 0.06 %, and 3x10-6 %, respectively. As for scenario 2, all the 3 conditions show similar trend with scenario 1. The LCA study of EPS is particularly focused on the manufacturing, distribution, and the end-of-lifetime treatments, with the introduction of recycling into the system. The findings show that manufacturing of EPS is the major contributor of the environmental impacts and GWP contributes to the most significant potential environmental impacts. Overall, recycling was found to have the least impact to the environment, which possibly be used as the new end-of-lifetime treatment of EPS in Malaysia.


2020 ◽  
Vol 12 (2) ◽  
pp. 98-105
Author(s):  
Doni Agus Sumitro ◽  
Arif Kusumawanto ◽  
Muslikhin Hidayat

South Processing Unit (SPU) adalah lapangan gas yang memproduksi kondensat dan gas bumi. Proses produksi kondensat dan gas bumi dapat mengakibatkan dampak terhadap lingkungan. Untuk mengukur dampak lingkungan yang di akibatkan oleh proses produksi kondensat dan gas bumi, dapat digunakan metode Life Cycle Assessment (LCA). Metode ini dapat digunakan untuk mengevaluasi dan menganalisis dampak suatu produk terhadap lingkungan. Penelitian ini bertujuan untuk mengetahui unit proses produksi yang berdampak besar terhadap global warming, dan human toxicity serta memberikan rekomedasi perbaikan untuk mengurangi dampak lingkungan.  Penelitian ini menggunakan metode LCA dan dihitung memakai software Simapro versi Developer 9.0. Hasil penelitian diketahui bahwa dampak lingkungan terjadi pada proses produksi gas dan kondensat di lapangan South Processing Unit (SPU) terdapat pada unit proses LP Compressors, Turbo Electric Generator, SCP Flare, SMP Flare, dan Sodium Hydroxide Injection.  LP Compressors memberikan dampak terbesar terhadap Global warming dan Human toxicity karena memberikan dampak sebesar 2.855,236 kg CO2 dan 8,8839 kg 1,4-DB eq.  Rekomendasi yang diberikan untuk mengurangi dampak lingkungan adalah penggunaan biomassa sebagai bahan bakar alternative, adsorpsi CO2 dengan adsorban zeolite, dan penanaman tanaman penyerap CO2. Kata kunci: LCA, South Processing Unit (SPU), SimaPro


2019 ◽  
Vol 17 (3) ◽  
pp. 522
Author(s):  
Joni Safaat Adiansyah ◽  
Nailawati Prastiya Ningrum ◽  
Dyan Pratiwi ◽  
Hadiyanto Hadiyanto

Pupuk urea adalah merupakan salah satu jenis pupuk yang paling banyak digunakan oleh petani di Indonesia. Total penggunaan pupuk urea selama tahun 2018 yang tercatat pada Kementerian Perindustrian Indonesia adalah sejumlah 6,27 Juta ton atau mengalami peningkatan 5% dari tahun sebelumnya. Salah satu pabrik yang menghasilkan pupuk urea adalah PT Pupuk Kujang di Cikampek Jawa Barat. Tujuan dari studi ini adalah untuk mengidentifikasi dampak lingkungan potensial yang dihasilkan dari produksi 50 Kg pupuk urea. Metode yang digunakan dalam kajian dampak daur hidup (Life Cycle Impact Assessment) adalah CML-IA dengan 11(sebelas) parameter yaitu abiotic depletion dan abiotic depletion (fossil fuel), global warming (GWP100), ozone layer depletion, human toxicity, fresh water dan marine aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, dan eutrophication,  Adapun batasan sistem menggunakancradle to grave yang memperhitungakn bahan dasar, proses produksi, transportasi dan pengelolaan limbah (karung bekas pupuk). Dari hasil analisa didapatkan bahwa proses produksi memberikan kontribusi dampak paling besar dibandingkan dengan pengelolaan limbah sisa karung (landfill). Proses produksi memberikan kontribusi terhadap dampak potensial lingkungan pada kisaran 99,14 – 100 persen dari total dampak yang di hasilkan. Sebagai tambahan bahwa dampak yang ditimbulkan pada proses di pabrik ammonia akan memberikan kontribusi lebih besar pada kisaran 22-37 persen lebih besar dibandingkan dengan proses di pabrik urea.Dari hasil analisa dengan memanfaatkan grafik jaringan (networking graph) pada program SimaPro juga menunjukkan bahwa environmental hotspotsdari daur hidup pupuk urea disebabkan oleh penggunaan gas alam, katalis molybdenum, penggunaan listrik dari Perusahaan Listrik Negara (PLN), penggunaan polypropylene dalam material karung, dan transportasi. Dengan mempertimbangan environmental hotspot maka tindakan perbaikan berkelanjutan perlu dilakukan baik berupa  audit energi maupun pengelolaan penggunaan katalis.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


Sign in / Sign up

Export Citation Format

Share Document