scholarly journals Identification of Mycoses in Developing Countries

2019 ◽  
Vol 5 (4) ◽  
pp. 90 ◽  
Author(s):  
Amir Arastehfar ◽  
Brian L. Wickes ◽  
Macit Ilkit ◽  
David H. Pincus ◽  
Farnaz Daneshnia ◽  
...  

Extensive advances in technology offer a vast variety of diagnostic methods that save time and costs, but identification of fungal species causing human infections remains challenging in developing countries. Since the echinocandins, antifungals widely used to treat invasive mycoses, are still unavailable in developing countries where a considerable number of problematic fungal species are present, rapid and reliable identification is of paramount importance. Unaffordability, large footprints, lack of skilled personnel, and high costs associated with maintenance and infrastructure are the main factors precluding the establishment of high-precision technologies that can replace inexpensive yet time-consuming and inaccurate phenotypic methods. In addition, point-of-care lateral flow assay tests are available for the diagnosis of Aspergillus and Cryptococcus and are highly relevant for developing countries. An Aspergillus galactomannan lateral flow assay is also now available. Real-time PCR remains difficult to standardize and is not widespread in countries with limited resources. Isothermal and conventional PCR-based amplification assays may be alternative solutions. The combination of real-time PCR and serological assays can significantly increase diagnostic efficiency. However, this approach is too expensive for medical institutions in developing countries. Further advances in next-generation sequencing and other innovative technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic tools may lead to efficient, alternate methods that can be used in point-of-care assays, which may supplement or replace some of the current technologies and improve the diagnostics of fungal infections in developing countries.

2020 ◽  
Author(s):  
Leonardo Miscio ◽  
Antonio Olivieri ◽  
Francesco Labonia ◽  
Gianfranco De Feo ◽  
Paolo Chiodini ◽  
...  

Abstract Background: The easy access to a quick diagnosis of coronavirus disease 2019 (COVID-19) is a key point to improve the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to contain its spread. Up to now, laboratory real-time PCR is the standard of care, but requires a fully equipped laboratory and significant infrastructure. Consequently, new diagnostic tools are required. Methods: In the present work, the diagnostic accuracy of the point-of-care rapid test "bKIT Virus Finder COVID-19" (Hyris Ltd) is evaluated by a retrospective and a prospective analysis on SARS CoV-2 samples previously assessed with an FDA “authorized for the emergency use - EUA” reference method. Descriptive statistics were used for the present study.Results: Results obtained with the Hyris Kit are the same as that of standard laboratory-based real time PCR methods for all the analyzed samples. In addition, the Hyris Kit provides the test results in less than 2 hours, a significantly shorter time compared to the reference methods, without the need of a fully equipped laboratory. Conclusions: To conclude, the Hyris kit represents a promising tool to improve the health surveillance and to increase the capacity of SARS-CoV-2 testing.


2018 ◽  
Vol 76 ◽  
pp. 189-195
Author(s):  
David Tomas ◽  
Mingzhen Fan ◽  
Sha Zhu ◽  
Adrianne Klijn

2016 ◽  
Vol 54 (12) ◽  
pp. 2910-2918 ◽  
Author(s):  
Clara Valero ◽  
Laura de la Cruz-Villar ◽  
Óscar Zaragoza ◽  
María José Buitrago

The diagnosis of invasive fungal infections (IFIs) is usually based on the isolation of the fungus in culture and histopathological techniques. However, these methods have many limitations often delaying the definitive diagnosis. In recent years, molecular diagnostics methods have emerged as a suitable alternative for IFI diagnosis. When there is not a clear suspicion of the fungus involved in the IFI, panfungal real-time PCR assays have been used, allowing amplification of any fungal DNA. However, this approach requires subsequent amplicon sequencing to identify the fungal species involved, increasing response time. In this work, a new panfungal real-time PCR assay using the combination of an intercalating dye and sequence-specific probes was developed. After DNA amplification, a melting curve analysis was also performed. The technique was standardized by using 11 different fungal species and validated in 60 clinical samples from patients with proven and probable IFI. A melting curve database was constructed by collecting those melting curves obtained from fungal species included in the standardization assay. Results showed high reproducibility (coefficient of variation [CV] < 5%; r > 0.95) and specificity (100%). The overall sensitivity of the technique was 83.3%, with the group of fungi involved in the infection detected in 77.8% of the positive samples with IFIs covered by molecular beacon probes. Moreover, sequencing was avoided in 67.8% of these “probe-positive” results, enabling report of a positive result in 24 h. This technique is fast, sensitive, and specific and promises to be useful for improving early diagnosis of IFIs.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Leonardo Miscio ◽  
Antonio Olivieri ◽  
Francesco Labonia ◽  
Gianfranco De Feo ◽  
Paolo Chiodini ◽  
...  

Abstract Background The easy access to a quick diagnosis of coronavirus disease 2019 (COVID-19) is a key point to improve the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to contain its spread. Up to now, laboratory real-time PCR is the standard of care, but requires a fully equipped laboratory and significant infrastructure. Consequently, new diagnostic tools are required. Methods In the present work, the diagnostic accuracy of the point-of-care rapid test "bKIT Virus Finder COVID-19" (Hyris Ltd) is evaluated by a retrospective and a prospective analysis on SARS CoV-2 samples previously assessed with an FDA “authorized for the emergency use—EUA” reference method. Descriptive statistics were used for the present study. Results Results obtained with the Hyris Kit are the same as that of standard laboratory-based real time PCR methods for all the analyzed samples. In addition, the Hyris Kit provides the test results in less than 2 h, a significantly shorter time compared to the reference methods, without the need of a fully equipped laboratory. Conclusions To conclude, the Hyris kit represents a promising tool to improve the health surveillance and to increase the capacity of SARS-CoV-2 testing.


2019 ◽  
pp. 60-66
Author(s):  
Viet Quynh Tram Ngo ◽  
Thi Ti Na Nguyen ◽  
Hoang Bach Nguyen ◽  
Thi Tuyet Ngoc Tran ◽  
Thi Nam Lien Nguyen ◽  
...  

Introduction: Bacterial meningitis is an acute central nervous infection with high mortality or permanent neurological sequelae if remained undiagnosed. However, traditional diagnostic methods for bacterial meningitis pose challenge in prompt and precise identification of causative agents. Aims: The present study will therefore aim to set up in-house PCR assays for diagnosis of six pathogens causing the disease including H. influenzae type b, S. pneumoniae, N. meningitidis, S. suis serotype 2, E. coli and S. aureus. Methods: inhouse PCR assays for detecting six above-mentioned bacteria were optimized after specific pairs of primers and probes collected from the reliable literature resources and then were performed for cerebrospinal fluid (CSF) samples from patients with suspected meningitis in Hue Hospitals. Results: The set of four PCR assays was developed including a multiplex real-time PCR for S. suis serotype 2, H. influenzae type b and N. meningitides; three monoplex real-time PCRs for E. coli, S. aureus and S. pneumoniae. Application of the in-house PCRs for 116 CSF samples, the results indicated that 48 (39.7%) cases were positive with S. suis serotype 2; one case was positive with H. influenzae type b; 4 cases were positive with E. coli; pneumococcal meningitis were 19 (16.4%) cases, meningitis with S. aureus and N. meningitidis were not observed in any CSF samples in this study. Conclusion: our in-house real-time PCR assays are rapid, sensitive and specific tools for routine diagnosis to detect six mentioned above meningitis etiological agents. Key words: Bacterial meningitis, etiological agents, multiplex real-time PCR


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM).The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Author(s):  
Carla Eiras

Interleukin-6 (IL-6) is a multifunctional cytokine and high bloodstream levels of which have been associated with severe inflammatory diseases, such as dengue fever, sepsis, various cancers, and visceral leishmaniasis (VL). Rapid tests for the quantification of IL-6 would be of great assistance for the bedside diagnosis and treatment of diseases such as VL. We have developed a lateral flow assay (LFA) for rapid and colorimetric IL-6 detection, consisting of anti-IL-6 antibodies conjugated to gold nanoparticles (AuNPs). The optimal concentration of anti-IL-6 used in the conjugate was determined to be 800.0 μg/mL, based on an aggregation assay using LFA. A linear relationship between IL-6 standard concentration and color intensity was observed after 20 min, with a linear range between 1.25 ng/mL and 9,000 ng/mL. The limit of detection for this method was estimated at a t0.38 ng/mL. The concentration of IL-6 in five patients with severe VL was measured using LFA, and the results were consistent with those obtained using the cytometric bead array (CBA) method. A thorough analysis of the LFA membranes’ surface morphology, before and after sample contact, was performed using atomic force microscopy (AFM). The prototype described here is still being tested and improved, but this LFA will undoubtedly be of great help in the clinical quantification of IL-6.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 915
Author(s):  
Irena Duś-Ilnicka ◽  
Aleksander Szymczak ◽  
Małgorzata Małodobra-Mazur ◽  
Miron Tokarski

Since the 2019 novel coronavirus outbreak began in Wuhan, China, diagnostic methods in the field of molecular biology have been developing faster than ever under the vigilant eye of world’s research community. Unfortunately, the medical community was not prepared for testing such large volumes or ranges of biological materials, whether blood samples for antibody immunological testing, or salivary/swab samples for real-time PCR. For this reason, many medical diagnostic laboratories have made the switch to working in the field of molecular biology, and research undertaken to speed up the flow of samples through laboratory. The aim of this narrative review is to evaluate the current literature on laboratory techniques for the diagnosis of SARS-CoV-2 infection available on pubmed.gov, Google Scholar, and according to the writers’ knowledge and experience of the laboratory medicine. It assesses the available information in the field of molecular biology by comparing real-time PCR, LAMP technique, RNA sequencing, and immunological diagnostics, and examines the newest techniques along with their limitations for use in SARS-CoV-2 diagnostics.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 461
Author(s):  
Madjid Morsli ◽  
Quentin Kerharo ◽  
Jeremy Delerce ◽  
Pierre-Hugues Roche ◽  
Lucas Troude ◽  
...  

Current routine real-time PCR methods used for the point-of-care diagnosis of infectious meningitis do not allow for one-shot genotyping of the pathogen, as in the case of deadly Haemophilus influenzae meningitis. Real-time PCR diagnosed H. influenzae meningitis in a 22-year-old male patient, during his hospitalisation following a more than six-metre fall. Using an Oxford Nanopore Technologies real-time sequencing run in parallel to real-time PCR, we detected the H. influenzae genome directly from the cerebrospinal fluid sample in six hours. Furthermore, BLAST analysis of the sequence encoding for a partial DUF417 domain-containing protein diagnosed a non-b serotype, non-typeable H.influenzae belonging to lineage H. influenzae 22.1-21. The Oxford Nanopore metagenomic next-generation sequencing approach could be considered for the point-of-care diagnosis of infectious meningitis, by direct identification of pathogenic genomes and their genotypes/serotypes.


2020 ◽  
Vol 58 (9) ◽  
Author(s):  
Katharina Ziegler ◽  
Anca Rath ◽  
Christoph Schoerner ◽  
Renate Meyer ◽  
Thomas Bertsch ◽  
...  

ABSTRACT Diagnosis of Lyme neuroborreliosis (LNB) is challenging, as long as Borrelia-specific intrathecal antibodies are not yet detectable. The chemokine CXCL13 is elevated in the cerebrospinal fluid (CSF) of LNB patients. Here, we compared the performances of the Euroimmun CXCL13 enzyme-linked immunosorbent assay (CXCL13 ELISA) and the ReaScan CXCL13 lateral flow immunoassay (CXCL13 LFA), a rapid point-of-care test, to support the diagnosis of LNB. In a dual-center case-control study, CSF samples from 90 patients (34 with definite LNB, 10 with possible LNB, and 46 with other central nervous system [CNS] diseases [non-LNB group]) were analyzed with the CXCL13 ELISA and the CXCL13 LFA. Classification of patients followed the European Federation of Neurological Societies (EFNS) guidelines on LNB. The CXCL13 ELISA detected elevated CXCL13 levels in all patients with definite LNB (median, 1,409 pg/ml) compared to the non-LNB controls (median, 20.7 pg/ml; P < 0.0001), with a sensitivity of 100% and a specificity of 84.8% (cutoff value, 78.6 pg/ml; area under the receiver operating characteristic [ROC] curve, 0.93). Similarly, the CXCL13 LFA yielded elevated CXCL13 levels in 31 patients with definite LNB (median arbitrary value, 223.5) compared to the non-LNB control patients (median arbitrary value, 0; P < 0.0001) and had a sensitivity and specificity of 91.2% and 93.5%, respectively (cutoff arbitrary value, 22.5; area under the ROC curve, 0.94). The correlation between the CXCL13 levels obtained by ELISA and LFA was strong (Spearman correlation coefficient r = 0.89; P < 0.0001). The CXCL13 ELISA and the CXCL13 LFA are comparable diagnostic tools for the detection of CXCL13 in the CSF of patients with definite LNB. The advantage of the CXCL13 LFA is the shorter time to result.


Sign in / Sign up

Export Citation Format

Share Document