scholarly journals Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest

2021 ◽  
Vol 7 (6) ◽  
pp. 412
Author(s):  
Clémentine Lepinay ◽  
Lucie Jiráska ◽  
Vojtěch Tláskal ◽  
Vendula Brabcová ◽  
Tomáš Vrška ◽  
...  

Deadwood represents an important carbon stock and contributes to climate change mitigation. Wood decomposition is mainly driven by fungal communities. Their composition is known to change during decomposition, but it is unclear how environmental factors such as wood chemistry affect these successional patterns through their effects on dominant fungal taxa. We analysed the deadwood of Fagus sylvatica and Abies alba across a deadwood succession series of >40 years in a natural fir-beech forest in the Czech Republic to describe the successional changes in fungal communities, fungal abundance and enzymatic activities and to link these changes to environmental variables. The fungal communities showed high levels of spatial variability and beta diversity. In young deadwood, fungal communities showed higher similarity among tree species, and fungi were generally less abundant, less diverse and less active than in older deadwood. pH and the carbon to nitrogen ratio (C/N) were the best predictors of the fungal community composition, and they affected the abundance of half of the dominant fungal taxa. The relative abundance of most of the dominant taxa tended to increase with increasing pH or C/N, possibly indicating that acidification and atmospheric N deposition may shift the community composition towards species that are currently less dominant.

2012 ◽  
Vol 79 (4) ◽  
pp. 1191-1199 ◽  
Author(s):  
Sarah D. Eisenlord ◽  
Zachary Freedman ◽  
Donald R. Zak ◽  
Kai Xue ◽  
Zhili He ◽  
...  

ABSTRACTFuture rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities of actinobacteria and fungi present in the forest floor using GeoChip 4.0, a high-throughput functional-gene microarray. The compositions of functional genes derived from actinobacterial and fungal communities was significantly altered by experimental nitrogen deposition, with more heterogeneity detected in both groups. Experimental N deposition significantly decreased the richness and diversity of genes involved in the depolymerization of starch (∼12%), hemicellulose (∼16%), cellulose (∼16%), chitin (∼15%), and lignin (∼16%). The decrease in richness occurred across all taxonomic groupings detected by the microarray. The compositions of genes encoding oxidoreductases, which plausibly mediate lignin decay, were responsible for much of the observed dissimilarity between actinobacterial communities under ambient and experimental N deposition. This shift in composition and decrease in richness and diversity of genes encoding enzymes that mediate the decay process has occurred in parallel with a reduction in the extent of decay and accumulation of soil organic matter. Our observations indicate that compositional changes in actinobacterial and fungal communities elicited by experimental N deposition have functional implications for the cycling and storage of carbon in forest ecosystems.


2021 ◽  
Author(s):  
Rasmus Kjoller ◽  
Carla Cruz-Paredes

<p>Soil pH is consistently recorded as the single most important variable explaining bacterial richness and community composition locally as globally. Bacterial richness responds to soil pH in a bell-shaped pattern, highest in soils with near-neutral pH, while lower diversity is found in soil with pH >8 and <4.5. Also, community turnover is strongly determined by pH for bacteria. In contrast, pH effects on fungi is apparently less pronounced though also much less studied compared to bacteria. Still, pH appears to be a significant determinant for fungal communities but typically not the most important. Rarely are bacterial and fungal communities co-analyzed from the same field samples taken across pH gradients. Here we analyze the community responses of fungi and bacteria in parallel over an extreme pH gradient ranging from pH 4 to 8 established by applying strongly alkaline wood ash to replicated plots in a Picea abies plantation. Bacterial and fungal community composition were assessed by amplicon-based meta-barcoding. Bacterial richness were not significantly affected by pH, while fungal richness and a-diversity were stimulated with higher pH. We found that both, bacterial and fungal communities increasingly deviated from the untreated plots with increasing amount of wood ash though fungal communities were more resistant to changes than bacterial. Soil NH<sub>4</sub>, NO<sub>3</sub> and pH significantly correlated with the NMDS pattern for both bacterial and fungal communities. In the presentation we will discuss resistance versus sensitivity of different fungal functional guilds towards higher pH as well as the underlying factors explaining the community changes.</p>


Botany ◽  
2014 ◽  
Vol 92 (12) ◽  
pp. 855-865 ◽  
Author(s):  
Justine Karst ◽  
Morgan J. Randall ◽  
Catherine A. Gehring

Altered disturbance regimes and novel introductions are causing rapid shifts in the distribution of pines (Pinus L.). The functionally obligate symbiosis between pines and ectomycorrhizal (EM) fungi dictates that shifts in the distribution of one partner will affect the distribution of the other. In this review, we examine evidence for three hypotheses. (1) The loss of photosynthates through stress or tree mortality decreases the abundance of EM fungi and selects for less carbon-demanding species. (2) Pine introductions initiate establishment of novel EM fungal communities. (3) The extent of shifts in EM fungal abundance and community composition is mediated by surrounding vegetation. We find support for these hypotheses though changes in EM fungal abundance are variable and context-dependent. We posit that the consequences of shifts in EM fungal abundance and community composition extend beyond the individual tree to the landscape; these changes may affect population dynamics of both symbionts, ecosystem processes, and the conservation and evolution of fungi. In addition to conducting baseline surveys to assess the distribution of EM fungi, increasing our understanding of their function, morphology, propagation, and controls on host-specificity, and shifts would also assist in predicting the trajectory of ecosystems following the loss or gain of pine.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Timothy J. Philpott ◽  
Jason S. Barker ◽  
Cindy E. Prescott ◽  
Sue J. Grayston

ABSTRACT Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely uncharacterized. Fungi vary in their capacity to decompose plant litter, suggesting that fungal community composition is an important determinant of decomposition rates. Variable-retention harvesting is a forestry practice that modifies fungal communities by providing refuge for ectomycorrhizal fungi. We evaluated the effects of variable retention and clear-cut harvesting on fungal communities decomposing fine roots at two sites (6 and 13 years postharvest), at two decay stages (43 days and 1 year), and in uncut stands in temperate rainforests. Harvesting impacts on fungal community composition were detected only after 6 years after harvest. We suggest that fungal community composition may be an important factor that reduces fine-root decomposition rates relative to those of above-ground plant litter, which has important consequences for forest carbon cycling.


2018 ◽  
Author(s):  
József Geml

AbstractIn temperate regions, slope aspect is one of the most influential drivers of environmental conditions at landscape level. The effect of aspect on vegetation has been well studied, but virtually nothing is known about how fungal communities are shaped by aspect-driven environmental conditions. I carried out DNA metabarcoding of fungi from soil samples taken in a selected study area of Pannonian forests to compare richness and community composition of taxonomic and functional groups of fungi between slopes of predominantly southerly vs. northerly aspect and to assess the influence of selected environmental variables on fungal community composition. The deep sequence data presented here (i.e. 980 766 quality-filtered sequences) indicate that both niche (environmental filtering) and neutral (stochastic) processes shape fungal community composition at landscape level. Fungal community composition correlated strongly with aspect, with many fungi showing preference for either south-facing or north-facing slopes. Several taxonomic and functional groups showed significant differences in richness between north-and south-facing slopes and strong compositional differences were observed in all functional groups. The effect of aspect on fungal communities likely is mediated through contrasting mesoclimatic conditions, that in turn influence edaphic processes as well as vegetation. Finally, the data presented here provide an unprecedented insight into the diversity and landscape-level community dynamics of fungi in the Pannonian forests.


Author(s):  
Kaire Loit ◽  
Liina Soonvald ◽  
Alar Astover ◽  
Eve Runno-Paurson ◽  
Maarja Öpik ◽  
...  

The rhizosphere fungal community can play an important role in determining plant growth and health. In this study, using high-throughput sequencing, we investigated the fungal diversity and community composition in the roots and rhizosphere soil of 21 potato (Solanum tuberosum L.) cultivars. The samples were collected at three different sampling points. Furthermore, we assessed the differences in both diversity and composition of pathogen and saprotroph communities. In soil and roots, the fungal richness and relative abundance of pathogens and saprotrophs were mainly affected by sampling time. However, root fungal communities were also significantly affected by cultivar. The most substantial effect of cultivar was on root pathogen diversity. Moreover, the occurrence of most pathogens strongly varied among cultivars. Soil fungal community composition was primarily determined by sampling time; whereas in roots, the primary determinant was cultivar. Our results demonstrate changes in fungal communities over the potato growing season, as well as highlight the importance of potato cultivar on root fungal communities, and emphasise their importance in plant breeding.


2020 ◽  
Author(s):  
Tahliyah S. Mims ◽  
Qusai Al Abdullah ◽  
Justin D. Stewart ◽  
Sydney P. Watts ◽  
Catrina T. White ◽  
...  

ABSTRACTObjectiveAs an active interface between the host and their diet, the gut bacteriome influences host metabolic adaptation. However, the contribution of gut fungi to host metabolic outcomes is not yet understood. Therefore, we aimed to determine if host metabolic response to an ultra-processed diet reflects gut fungal community composition.DesignWe compared jejunal fungi and bacteria from 72 healthy mice with the same genetic background but different starting mycobiomes before and after 8 weeks on an ultra-processed or standardized diet using 16S and internal transcribed spacer region 2 ribosomal RNA sequencing. We measured host body composition using magnetic resonance imaging, examined changes in metabolically active host tissues and quantified serum metabolic biomarkers.ResultsGut fungal communities are highly variable between mice, differing by vendor, age and sex. After exposure to an ultra-processed diet for 8 weeks, persistent differences in fungal community composition strongly associate with differential deposition of body mass in male mice compared to mice on standardized diet. Fat deposition in the liver, genomic adaptation of metabolically active tissues and serum metabolic biomarkers are correlated with alterations in fungal diversity and community composition. Variation in fungi from the genera Thermomyces and Saccharomyces most strongly associate with increased weight gain.ConclusionsIn the gut of healthy mice, host-microbe metabolic interactions strongly reflect variability in fungal communities. Our results confirm the importance of luminal fungal communities to host metabolic adaptation to dietary exposure. Gut fungal communities may represent a therapeutic target for the prevention and treatment of metabolic disease.Graphical AbstractIn BriefWhat is already known about this subject?Gut bacterial communities have evolved to influence the metabolic outcomes of the host in mammals. Evidence from across the lifespan suggests that differences in composition of these communities is associated with energy consumption. However, gut microbial communities, while often equated to bacteria, are diverse, multi-kingdom ecologies and limited information is available for the role of other kingdoms of life, such as fungi.What are the new findings?Gut fungal communities, collectively termed the mycobiome, are less diverse and abundant than bacterial communities in the gastrointestinal tract. This study identifies the considerable influence of the environment and dietary exposure on the composition of jejunal fungal communities in healthy mice with the same genetic background. After exposure to processed diet, differences in fungal community composition in male mice were strongly correlated with persistent differences body composition and markers of metabolic tone.How might it impact on clinical practice in the foreseeable future?These results verify that the baseline metabolic tone of health mice strongly reflects the ecological complexity of the gastrointestinal mycobiome. Variation in the composition of gut fungal communities is likely an underappreciated source of experimental and clinical variability in metabolic studies. Gastrointestinal fungi are likely a target for prevention and treatment of metabolic disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
József Geml ◽  
Luis N. Morgado ◽  
Tatiana A. Semenova-Nelsen

The arctic tundra is undergoing climate-driven changes and there are serious concerns related to the future of arctic biodiversity and altered ecological processes under possible climate change scenarios. Arctic land surface temperatures and precipitation are predicted to increase further, likely causing major transformation in terrestrial ecosystems. As a response to increasing temperatures, shifts in vegetation and soil fungal communities have already been observed. Little is known, however, how long-term experimental warming coupled with increased snow depth influence the trajectories of soil fungal communities in different tundra types. We compared edaphic variables and fungal community composition in experimental plots simulating the expected increase in summer warming and winter snow depth, based on DNA metabarcoding data. Fungal communities in the sampled dry and moist acidic tundra communities differed greatly, with tundra type explaining ca. one-third of compositional variation. Furthermore, dry and moist tundra appear to have different trajectories in response to climate change. Specifically, while both warming and increased snow depth had significant effects on fungal community composition and edaphic variables in dry tundra, the effect of increased snow was greater. However, in moist tundra, fungal communities mainly were affected by summer warming, while increased snow depth had a smaller effect and only on some functional groups. In dry tundra, microorganisms generally are limited by moisture in the summer and extremely low temperatures in winter, which is in agreement with the stronger effect of increased snow depth relative to warming. On the contrary, moist tundra soils generally are saturated with water, remain cold year-round and show relatively small seasonal fluctuations in temperature. The greater observed effect of warming on fungi in moist tundra may be explained by the narrower temperature optimum compared to those in dry tundra.


2020 ◽  
Vol 96 (12) ◽  
Author(s):  
An Bui ◽  
Devyn Orr ◽  
Michelle Lepori-Bui ◽  
Kelli Konicek ◽  
Hillary S Young ◽  
...  

ABSTRACT A large part of ecosystem function in woodland systems depends on soil fungal communities. However, global climate change has the potential to fundamentally alter these communities as fungal species are filtered with changing environmental conditions. In this study, we examined the potential effects of climate on host-associated (i.e. tree-associated) soil fungal communities at climatically distinct sites in the Tehachapi Mountains in California, where more arid conditions represent likely regional climate futures. We found that soil fungal community composition changes strongly across sites, with species richness and diversity being highest at the most arid site. However, host association may buffer the effects of climate on community composition, as host-associated fungal communities are more similar to each other across climatically distinct sites than the whole fungal community. Lastly, an examination of functional traits for ectomycorrhizal fungi, a well-studied guild of fungal mutualist species, showed that stress-tolerant traits were more abundant at arid sites than mesic sites, providing a mechanistic understanding of these community patterns. Taken together, our results indicate that fungal community composition will likely shift with future climate change but that host association may buffer these effects, with shifts in functional traits having implications for future ecosystem function.


Sign in / Sign up

Export Citation Format

Share Document