scholarly journals Peanut Seed Coat Acts as a Physical and Biochemical Barrier against Aspergillus flavus Infection

2021 ◽  
Vol 7 (12) ◽  
pp. 1000
Author(s):  
Leslie Commey ◽  
Theophilus K. Tengey ◽  
Christopher J. Cobos ◽  
Lavanya Dampanaboina ◽  
Kamalpreet K. Dhillon ◽  
...  

Aflatoxin contamination is a global menace that adversely affects food crops and human health. Peanut seed coat is the outer layer protecting the cotyledon both at pre- and post-harvest stages from biotic and abiotic stresses. The aim of the present study is to investigate the role of seed coat against A. flavus infection. In-vitro seed colonization (IVSC) with and without seed coat showed that the seed coat acts as a physical barrier, and the developmental series of peanut seed coat showed the formation of a robust multilayered protective seed coat. Radial growth bioassay revealed that both insoluble and soluble seed coat extracts from 55-437 line (resistant) showed higher A. flavus inhibition compared to TMV-2 line (susceptible). Further analysis of seed coat biochemicals showed that hydroxycinnamic and hydroxybenzoic acid derivatives are the predominant phenolic compounds, and addition of these compounds to the media inhibited A. flavus growth. Gene expression analysis showed that genes involved in lignin monomer, proanthocyanidin, and flavonoid biosynthesis are highly abundant in 55-437 compared to TMV-2 seed coats. Overall, the present study showed that the seed coat acts as a physical and biochemical barrier against A. flavus infection and its potential use in mitigating the aflatoxin contamination.

1994 ◽  
Vol 21 (2) ◽  
pp. 130-134 ◽  
Author(s):  
S. M. Basha ◽  
R. J. Cole ◽  
S. K. Pancholy

Abstract An in vitro seed culture system was established to grow peanut seed of different maturities viz. white, yellow, orange, brown and black, using a modified Murashige and Skoog medium. Under this system peanut seed of yellow, orange, brown and black maturity categories grew to maturity as measured by increase in their size and germinability. In vitro cultured seeds produced significant amounts of phytoalexins and were contaminated with aflatoxins following their inoculation with Aspergillus spp. while the noninoculated sterile controls did not produce any phytoalexins. Exposure of seed cultures to water stress using various concentrations of mannitol (0 to 1 M) and polyethylene glycol 8000 (0-30% w/v) caused a significant decrease in their phytoalexin producing ability, and enhanced fungal growth compared to the nonstressed controls. The seeds that were stressed with mannitol and subsequently inoculated with A. flavus and A. parasiticus showed a significant increase in the aflatoxin contamination of stressed seed compared to the unstressed control. This would indicate that in vitro grown seeds responded to water stress similar to the field grown peanuts by loosing their ability to produce phytoalexins and increased susceptibility to aflatoxin contamination. Hence, this system has a potential application in evaluating peanut genotypes for aflatoxin resistance under water stress.


2005 ◽  
Vol 143 (1) ◽  
pp. 43-55 ◽  
Author(s):  
L. W. ZENG ◽  
P. S. COCKS ◽  
S. G. KAILIS ◽  
J. KUO

Changes in the seed coat morphology of 12 annual legumes were studied using environmental scanning electron microscopy (ESEM). The seeds of Biserrula pelecinus L. cv. Casbah, Ornithopus sativus cv. Cadiz, Trifolium clypeatum L., T. spumosum L., T. subterraneum L. cv. Bacchus Marsh, Trigonella balansae Boiss. & Reuter., Trigonella monspeliaca L. and Vicia sativa subsp. amphicarpa Dorthes (morthes.) were examined by ESEM after exposure to field conditions for 6 months, while those of Medicago polymorpha L. cv. Circle Valley, Trifolium clypeatum L., T. glanduliferum Boiss., T. lappaceum L., T. spumosum L., and T. subterraneum L. cv. Dalkeith, were examined after 2 years' exposure. The entry of water into seeds was followed by covering various parts of the seed coat with petroleum jelly and soaking the treated seeds in dyes.As the seeds softened over time, more and larger fractures appeared on the seed coat. Water entered the seed either through fractures, over the seed coat as a whole or through the lens. It is hypothesized that the formation of fractures occurs after physicochemical changes in the seed coat, probably associated with changes in the amount and nature of seed coat lipids.The newly matured whole seeds of M. polymorpha cv. Circle Valley, T. clypeatum, T. glanduliferum, T. lappaceum, T. spumosum, and T. subterraneum cv. Dalkeith were analysed for lipid content in 1997. The seed coats of T. subterraneum cv. Dalkeith and T. spumosum were separated from the cotyledons and examined in detail for lipid content.The lipid content of whole seeds ranged from 48 (T. lappaceum) to 167 mg/g (T. subterraneum cv. Dalkeith). Total lipid of the whole seeds of T. subterraneum cv. Dalkeith and T. glanduliferum declined by about 9 mg/g over 2 years, while in T. spumosum it declined by about 17 mg/g.In contrast, the major fatty acids in the seed coat declined by 0·67 mg/g over the 2 years. Change in seed coat lipids showed a marked similarity to changes in hardseededness for both T. subterraneum cv. Dalkeith and T. spumosum. The results strongly suggest that seed softening is associated with loss of lipids in the seed coat, because lipids have physical characteristics that are altered at temperatures experienced in the field.


Cancers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 822 ◽  
Author(s):  
Lena Schulze-Edinghausen ◽  
Claudia Dürr ◽  
Selcen Öztürk ◽  
Manuela Zucknick ◽  
Axel Benner ◽  
...  

Chronic lymphocytic leukemia (CLL) is known for its strong dependency on the tumor microenvironment. We found progranulin (GRN), a protein that has been linked to inflammation and cancer, to be upregulated in the serum of CLL patients compared to healthy controls, and increased GRN levels to be associated with an increased hazard for disease progression and death. This raised the question of whether GRN is a functional driver of CLL. We observed that recombinant GRN did not directly affect viability, activation, or proliferation of primary CLL cells in vitro. However, GRN secretion was induced in co-cultures of CLL cells with stromal cells that enhanced CLL cell survival. Gene expression profiling and protein analyses revealed that primary mesenchymal stromal cells (MSCs) in co-culture with CLL cells acquire a cancer-associated fibroblast-like phenotype. Despite its upregulation in the co-cultures, GRN treatment of MSCs did not mimic this effect. To test the relevance of GRN for CLL in vivo, we made use of the Eμ-TCL1 CLL mouse model. As we detected strong GRN expression in myeloid cells, we performed adoptive transfer of Eμ-TCL1 leukemia cells to bone marrow chimeric Grn−/− mice that lack GRN in hematopoietic cells. Thereby, we observed that CLL-like disease developed comparable in Grn−/− chimeras and respective control mice. In conclusion, serum GRN is found to be strongly upregulated in CLL, which indicates potential use as a prognostic marker, but there is no evidence that elevated GRN functionally drives the disease.


2002 ◽  
Vol 138 (3) ◽  
pp. 255-260 ◽  
Author(s):  
S. J. GOKANI ◽  
V. S. THAKER

Fibres of three cotton cultivars (Gossypium hirsutum H-4, H-8 and G. arboreum G. Cot-15) were analysed for growth in terms of fibre length and dry weight and endogenous gibberellic acid (GA3) content thrice during 1997–2000, at Rajkot. The development of cotton fibre was divided into four distinct growth phases but overlap between elongation and secondary thickening was considerable which suggests that both these phases are independent of each other. During fibre elongation, GA3 content remained low and increased after a decrease in the rate of fibre elongation in all three genotypes. The long staple cultivar (H-4) showed highest endogenous GA3 content followed by the middle one (H-8) and the short staple cultivar (G. Cot-15). In in vitro studies when GA3, NAA or GA3+NAA was supplemented to the media, increase in fibre length of the short staple cultivar was maximum, followed by the middle one and the long staple cultivar. Both in vivo and in vitro findings suggest that GA3 is one of the important factors that determine fibre length.


Parasitology ◽  
2016 ◽  
Vol 144 (6) ◽  
pp. 730-737 ◽  
Author(s):  
ALESSIO GIANNELLI ◽  
RICCARDO PAOLO LIA ◽  
GIADA ANNOSCIA ◽  
CANIO BUONAVOGLIA ◽  
ELEONORA LORUSSO ◽  
...  

SUMMARYThe distribution of Hepatozoon canis mainly encompasses areas where its main tick vector, Rhipicephalus sanguineus sensu lato, is present. However, the detection of this pathogen in dogs, foxes and golden jackals well outside the areas inhabited by this tick species reinforced the hypothesis that additional ixodids are involved in the life cycle and transmission of this protozoon. The present study provides, for the first time, data supporting the sporogonic development of H. canis in specimens of Rhipicephalus turanicus collected from a naturally infected fox from southern Italy. The epidemiological role of R. turanicus as a vector of H. canis is discussed, along with information on the potential use of cell cultures for the experimental infection with H. canis sporozoites. The in vitro infection of canine leucocytes by sporozoites from ticks is proposed as a potential tool for future in-depth studies on the biology of H. canis.


Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. R217-R227 ◽  
Author(s):  
Tessa Lord ◽  
R John Aitken

With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ilaria Giusti ◽  
Vincenza Dolo

Prostate cancer (PCa) is the most common cancer—excluding skin tumors—in men older than 50 years of age. Over time, the ability to diagnose PCa has improved considerably, mainly due to the introduction of prostate-specific antigen (PSA) in the clinical routine. However, it is important to take into account that although PSA is a highly organ-specific marker, it is not cancer-specific. This shortcoming suggests the need to find new and more specific molecular markers. Several emerging PCa biomarkers have been evaluated or are being assessed for their potential use. There is increasing interest in the prospective use of extracellular vesicles as specific markers; it is well known that the content of vesicles is dependent on their cellular origin and is strongly related to the stimulus that triggers the release of the vesicles. Consequently, the identification of a disease-specific molecule (protein, lipid or RNA) associated with vesicles could facilitate their use as novel biological markers. The present review describes severalin vitrostudies that demonstrate the role of vesicles in PCa progression and severalin vivostudies that highlight the potential use of vesicles as PCa biomarkers.


2004 ◽  
Vol 31 (2) ◽  
pp. 124-134 ◽  
Author(s):  
H. Q. Xue ◽  
T. G. Isleib ◽  
G. A. Payne ◽  
G. OBrian

Abstract Contamination of peanut (Arachis hypogaea L.) with aflatoxin produced by species of Aspergillus remains a problem for the U.S. peanut industry. Several peanut genotypes were reported to be resistant to in vitro seed colonization by Aspergillus flavus Link ex Fries (IVSCAF), to field seed colonization by A. flavus (FSCAF), or to preharvest aflatoxin contamination (PAC), but few to production of aflatoxin per se. Cotyledons of 39 peanut genotypes reportedly resistant to IVSCAF, FSCAF, or PAC, and eight susceptible to PAC were evaluated in four tests for their ability to support aflatoxin production after inoculation with A. flavus. Cultivars Perry and Gregory were used as checks in each test. Seed cotyledons were separated, manually blanched, inoculated with conidia of A. flavus, placed on moistened filter paper in petri dishes, and incubated for 8 d at 28 C. Dishes were arranged on plastic trays enclosed in plastic bags and stacked with PVC spacers between trays. Incomplete block designs were used for all tests. In each test, none of the genotypes examined was completely resistant to aflatoxin production, but significant genotypic variation was observed in the amount of total aflatoxin accumulated in seeds. Genotypes previously reported to be resistant to IVSCAF, FSCAF, or PAC exhibited differential abilities to support aflatoxin production. PI 590325, PI 590299, PI 290626, and PI 337409 supported reduced levels of aflatoxin, and their degree of resistance was consistent across tests. Fungal growth was highly correlated with aflatoxin production in three tests. The results from this study suggested that there were no absolute relationships of aflatoxin production resistance with IVSCAF, FSCAF, or PAC resistance, but that it should be possible to identify a genotype with high IVSCAF, FSCAF, or PAC resistance and reduced capacity for aflatoxin production by A. flavus.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
E. J. Sánchez-Barceló ◽  
M. D. Mediavilla ◽  
D. X. Tan ◽  
R. J. Reiter

The objective of this paper was to analyze the data supporting the possible role of melatonin on bone metabolism and its repercussion in the etiology and treatment of bone pathologies such as the osteoporosis and the adolescent idiopathic scoliosis (AIS). Melatonin may prevent bone degradation and promote bone formation through mechanisms involving both melatonin receptor-mediated and receptor-independent actions. The three principal mechanisms of melatonin effects on bone function could be: (a) the promotion of the osteoblast differentiation and activity; (b) an increase in the osteoprotegerin expression by osteoblasts, thereby preventing the differentiation of osteoclasts; (c) scavenging of free radicals generated by osteoclast activity and responsible for bone resorption. A variety of in vitro and in vivo experimental studies, although with some controversial results, point toward a possible role of melatonin deficits in the etiology of osteoporosis and AIS and open a new field related to the possible therapeutic use of melatonin in these bone diseases.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A538-A538
Author(s):  
Teagan James ◽  
Patrick Everett Chappell

Abstract Estrogen (E2) is essential for multiple physiological effects in females, ensuring maximum reproductive fitness and maintaining skeletal homeostasis. E2 has been shown to stimulate cancellous bone formation via activation of estrogen receptor alpha (ERα), an effect widely accepted to be mediated directly at bone. A recent landmark study (Herber et al., Nat Commun 2019) demonstrated bone density increases in female mice harboring ERα-deletions specifically in arcuate Kiss-1 neurons. In this study, bone from transgenic females showed higher osteoblast functioning and increases in the expression of sp7 and runx2, positing a direct neural-bone regulatory axis altered by circulating E2 acting in brain. Our laboratory has used two immortalized Kisspeptin (Kiss1)-expressing and -secreting cell lines, KTaR-1 (representative of female arcuate Kiss-1 neurons) and KTaV-3 cells (representative of female AVPV Kiss-1 neurons) as models to explore the role of Kiss-1 in multiple physiological regulatory contexts. We recently determined that factors in the media of female ARC-derived KTaR-1 cells can affect parameters of osteoblast function in vitro, including increases in sp7 and runx2 expression, and formation of bone matrix (evaluated by Alizarin Red assay). Exposure of canine osteosarcoma cells to conditioned media from KTaR-1 cells led to increases in sp7 expression in an E2-dependent manner, and 24h E2-deprivation of these neurons stimulated secretion of osteogenic factors. In this current study, we have used LCMS-MS proteomic analysis to determine the contents of exosomes isolated from Kisspeptin neurons under varying E2 exposure conditions in vitro. Preliminary results reveal ~150-170 proteins up-regulated by E2 exposure and ~200-220 proteins downregulated by E2 exposure in exosomes of both KTaR-1 and KTaV-3 Kisspeptin neurons. Estrogen-regulated Kiss-1 exosomal proteins include several candidates involved in bone remodeling (pentraxin, osteonectin, osteoclast-stimulating factor-1) and neuronal synaptic plasticity and signaling (annexins, semaphorins, connexins). Current work is exploring the effects of exposure of purified exosomes on morphology and gene expression in immortalized GnRH neurons and osteoblasts. While further study is required, initial results suggest that exosomes may represent additional cellular communication pathways utilized by Kisspeptin neurons to elicit changes in brain and bone.


Sign in / Sign up

Export Citation Format

Share Document